
Tivoli® IBM Tivoli NetView for z/OS

Application Programmer’s Guide

Version 5 Release 4

SC31-8855-03

���

Tivoli® IBM Tivoli NetView for z/OS

Application Programmer’s Guide

Version 5 Release 4

SC31-8855-03

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 143.

This edition applies to version 5, release 4 of IBM Tivoli NetView for z/OS (product number 5697-ENV) and to all
subsequent versions, releases, and modifications until otherwise indicated in new editions.

This edition replaces SC31-8855-02.

© Copyright International Business Machines Corporation 1997, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . vii

About this publication . ix
Intended audience . ix
Publications . ix

IBM Tivoli NetView for z/OS library . ix
Related publications . xi
Accessing terminology online . xi
Using NetView for z/OS online help . xii
Using LookAt to look up message explanations . xii
Accessing publications online . xiii
Ordering publications. xiii

Accessibility . xiii
Tivoli technical training . xiii
Downloads . xiv
Support for problem solving . xiv
Conventions used in this publication . xiv

Typeface conventions . xv
Operating system-dependent variables and paths. xv
Syntax diagrams. xv

Chapter 1. Understanding the NetView Program-to-Program Interface 1
How the Interface Works . 1

Processing Requests . 2
Creating Buffer Queues . 3
Sending an NMVT or CP-MSU Formatted Alert . 3
Sending a Data Buffer Synchronously . 4
Receiving a Data Buffer Synchronously . 4

How the Interface Works with Applications . 5
High-Level Language Programs . 5
Assembler Programs. 6
Register Conventions . 6
Program Placement . 6
Sending Commands and Messages to the NetView Program 6

Chapter 2. Using High-Level Languages and Assembler to Send Requests 11
Enabling the Interface for MVS . 11
Receiving Alerts . 12
Routing Alerts to Multiple Receivers . 12
Building the Request Buffer . 13

Using the RPB . 13
Fields in the RPB . 14

Choosing the Request Type . 18
Request Type 1: Query the PPI Status. 19
Request Type 2: Query a Receiver’s Status . 20
Request Type 3: Obtain the ASCB and TCB Addresses . 21
Request Type 4: Define and Initialize a Receiver . 22
Request Type 9: Deactivate a Receiver . 24
Request Type 10: Delete a Receiver . 25
Request Type 12: Send an NMVT or CP-MSU Formatted Alert to the NetView Program 26
Request Type 14: Send a Data Buffer to a Receiver Synchronously 28
Request Type 22: Receive a Data Buffer . 30
Request Type 23: Purge a Data Buffer. 32
Request Type 24: Wait for the Receive or Connect ECB . 34

© Copyright IBM Corp. 1997, 2009 iii

Chapter 3. Using REXX to Send Requests . 35
DSIPHONE . 35
Parameters . 36
DSIPHONE Usage Notes . 37
MLWTO Attributes Support . 37
DSIPHONE Results. 37

Chapter 4. Using the NetView LU 6.2 Transport APIs 41
NetView MS Transport API . 41

MDS Function . 41
MS Transport Restrictions . 41

NetView High Performance Transport API . 41
Differences between Transports . 41
High Performance Transport Restrictions . 42

Deciding Which Transport API to Use . 42
When to Use the NetView MS Transport API . 42
When to Use the NetView High Performance Transport API 43

Considerations for Applications . 43
Send-Receive Interface . 43
Tasking Structure . 44
MDS Transactions . 44

Chapter 5. Management Services Applications 49
Registration Services . 49

Session Outage Notification . 49
REGISTER Command . 50

Send Macro . 50
Destination Name . 50
Restrictions . 51

Receive Macro . 51
Implementing the Application . 51

NetView Operator . 51
NetView System Programmer . 52
Non-NetView System Programmer . 52

Chapter 6. Operations Management Served Applications 57
Registration Service. 57

Buffering Replies . 57
Session Outage Notification . 58
REGISTER Command . 58

Send Macro . 58
Destination Name . 58
Restrictions . 59

Receive Macro . 59
Implementing the Application . 59

NetView Operator . 59
NetView System Programmer . 60
Non-NetView System Programmer . 60

Operations Management Routing Considerations . 60

Chapter 7. Using NetView Web Services Gateway 63
Introduction to the SOAP Client . 63
Using Web Services Gateway . 63
Making a SOAP Request . 63

Using a SOAP Envelope . 64
Using a WSDL-Generated Proxy Client . 64
Using a Java SAAJ Client . 65
Using a Dynamic Invocation Interface Client . 65

Formatting a SOAP Envelope . 65
Output Format . 68

iv Application Programmer’s Guide

||
||
||
||
||
||
||
||
||
||

Chapter 8. NetView High Performance Transport API 69
Registration Service. 69
Send Service . 70
Get Data Facility . 71
Implementing High Performance Transport API Applications 71

NetView System Programmer . 71
Non-NetView System Programmer . 73

Maintaining Data Integrity . 73

Chapter 9. Programming Techniques . 75
Writing Effective Programs . 75
High-Level Language and Assembler Programming Examples 75

Initializing a Receiver . 75
Receiving a Buffer . 76
Sending a Buffer Synchronously . 77
Disconnecting a Receiver . 77

REXX Programming Examples . 77
Usage Scenario . 77

Common Operations Services Commands . 78
COS Command Flow . 79
Message to Operator . 80
Using COS Command Lists . 80

Chapter 10. Using the Trace Facility . 83
Controlling the Trace Facility . 83

Writing to Internal Storage . 83
Writing to External Storage with GTF. 83

Monitoring the Trace Facility . 84

Appendix A. Data Formats for LU 6.2 Conversations 85
MDS Header Structure . 85

MDS Routing Information (X'1311') GDS Variable. 86
Agent Unit of Work Correlator (X'1549') GDS Variable . 88
Accepting an MDS-MU . 89
MDS-MU Example . 89

MDS Data Types . 89
CP-MSU Format . 90
Routing Report Format . 91
NMVT Format . 91
R&TI Format . 91

MDS Error Message Format . 92
MDS Error Message Example . 93
Application Program-Level Error Reporting . 94

Appendix B. Program-to-Program Interface Return Codes. 95

Appendix C. Network Asset Management . 97
Vital Product Data Descriptions . 97

Answering Node Configuration Data . 97
Product Data (Subvectors X'10' and X'11') . 98
DCE Data . 99
Link Configuration Data (Subvector X'52') . 99
Sense Data (Subvector X'7D') . 100
Attached Device Configuration Data (Subvector X'82') . 100
Product Set Attributes (Subvector X'84') . 100
Additional Product Set Attributes (Subvector X'86') . 101

Network Asset Management Command Lists . 101
Using the Sample Command Lists . 101
Writing Command Lists . 102

Contents v

||
||

Network Asset Management Record Formats . 102

Appendix D. External Log Record Formats. 109
External Log Record Type 37 . 109
External Log Record Type 38 . 114

NetView Command Authorization Table External Log Record 114
NetView Task Resource-Utilization-Data External Log Record 115
NetView Span Authorization Table External Log Record 115
Record Header and Section Formats . 115

External Log Record Type 39 . 128
Record Subtypes . 129
Record Section Formats . 131

Notices . 143
Programming Interfaces . 144
Trademarks . 145

Index . 147

vi Application Programmer’s Guide

Figures

1. Example of the Program-to-Program Interface 2
2. Overview of Sending an NMVT or CP-MSU

Formatted Alert 3
3. Overview of Sending a Data Buffer

Synchronously 4
4. Overview of Receiving a Data Buffer

Synchronously 5
5. Sending Alerts to Multiple Receivers through

the PPI 13
6. SOAP Request Sent to SOAP Endpoint 67
7. SOAP Response from SOAP Endpoint . . . 67

8. SOAP Fault Element 68
9. Format of an MDS-MU GDS 85

10. Format of an MDS Header 86
11. MDS-MU Message 89
12. Format of a CP-MSU 90
13. Format of a Routing Report 91
14. Format of an NMVT 91
15. Format of an R&TI 92
16. Format of an MDS Error Message 92
17. MDS Error Message. 94

© Copyright IBM Corp. 1997, 2009 vii

||
||

||

viii Application Programmer’s Guide

About this publication

The IBM® Tivoli® NetView® for z/OS® product provides advanced capabilities that
you can use to maintain the highest degree of availability of your complex,
multi-platform, multi-vendor networks and systems from a single point of control.
This publication, the IBM Tivoli NetView for z/OS Application Programmer’s Guide, is
written for programmers working with the NetView product and other related
products. Use it to perform the following tasks:
v Use the NetView LU 6.2 transport application programming interfaces (APIs).
v Write programs that send network management vector transport (NMVT) and

control point management service unit (CP-MSU) formatted alerts to the
hardware monitor for processing; write programs that send data buffers to, or
receive data buffers from, other application programs.

v Use common operations services (COS) commands and COS command lists.

Intended audience
This publication is for system programmers and application programmers. Readers
should be familiar with the Systems Network Architecture (SNA) requirements
described in Systems Network Architecture Formats and in the SNA/Management
Services Alert Implementation Guide.

Publications
This section lists publications in the IBM Tivoli NetView for z/OS library and
related documents. It also describes how to access Tivoli publications online and
how to order Tivoli publications.

IBM Tivoli NetView for z/OS library
The following documents are available in the IBM Tivoli NetView for z/OS library:
v Administration Reference, SC31-8854, describes the NetView program definition

statements required for system administration.
v Application Programmer’s Guide, SC31-8855, describes the NetView

program-to-program interface (PPI) and how to use the NetView application
programming interfaces (APIs).

v Automation Guide, SC31-8853, describes how to use automated operations to
improve system and network efficiency and operator productivity.

v Command Reference Volume 1 (A-N), SC31-8857, and Command Reference Volume 2
(O-Z), SC31-8858, describe the NetView commands, which can be used for
network and system operation and in command lists and command procedures.

v Customization Guide, SC31-8859, describes how to customize the NetView product
and points to sources of related information.

v Data Model Reference, SC31-8864, provides information about the Graphic
Monitor Facility host subsystem (GMFHS), SNA topology manager, and
MultiSystem Manager data models.

v Installation: Configuring Additional Components, SC31-8874, describes how to
configure NetView functions beyond the base functions.

v Installation: Configuring Graphical Components, SC31-8875, describes how to install
and configure the NetView graphics components.

© Copyright IBM Corp. 1997, 2009 ix

v Installation: Configuring the Tivoli NetView for z/OS Enterprise Management Agent,
SC31-6969, describes how to install and configure the NetView for z/OS
Enterprise Management Agent.

v Installation: Getting Started, SC31-8872, describes how to install and configure the
base NetView functions.

v Installation: Migration Guide, SC31-8873, describes the new functions provided by
the current release of the NetView product and the migration of the base
functions from a previous release.

v IP Management, SC27-2506, describes how to use the NetView product to manage
IP networks.

v Messages and Codes Volume 1 (AAU-DSI), SC31-6965, and Messages and Codes
Volume 2 (DUI-IHS), SC31-6966, describe the messages for the NetView product,
the NetView abend codes, the sense codes that are included in NetView
messages, and generic alert code points.

v Programming: Assembler, SC31-8860, describes how to write exit routines,
command processors, and subtasks for the NetView product using assembler
language.

v Programming: Pipes, SC31-8863, describes how to use the NetView pipelines to
customize a NetView installation.

v Programming: PL/I and C, SC31-8861, describes how to write command processors
and installation exit routines for the NetView product using PL/I or C.

v Programming: REXX and the NetView Command List Language, SC31-8862, describes
how to write command lists for the NetView product using the Restructured
Extended Executor language (REXX) or the NetView command list language.

v Resource Object Data Manager and GMFHS Programmer’s Guide, SC31-8865,
describes the NetView Resource Object Data Manager (RODM), including how
to define your non-SNA network to RODM and use RODM for network
automation and for application programming.

v Security Reference, SC31-8870, describes how to implement authorization checking
for the NetView environment.

v SNA Topology Manager Implementation Guide, SC31-8868, describes planning for
and implementing the NetView SNA topology manager, which can be used to
manage subarea, Advanced Peer-to-Peer Networking, and TN3270 resources.

v Troubleshooting Guide, GC27-2507, provides information about documenting,
diagnosing, and solving problems that might occur in using the NetView
product.

v Tuning Guide, SC31-8869, provides tuning information to help achieve certain
performance goals for the NetView product and the network environment.

v User’s Guide: Automated Operations Network, GC31-8851, describes how to use the
NetView Automated Operations Network (AON) component, which provides
event-driven network automation, to improve system and network efficiency. It
also describes how to tailor and extend the automated operations capabilities of
the AON component.

v User’s Guide: NetView, GC31-8849, describes how to use the NetView product to
manage complex, multivendor networks and systems from a single point.

v User’s Guide: NetView Management Console, GC31-8852, provides information
about the NetView management console interface of the NetView product.

v User’s Guide: Web Application, SC32-9381, describes how to use the NetView Web
application to manage complex, multivendor networks and systems from a
single point.

x Application Programmer’s Guide

v Licensed Program Specifications, GC31-8848, provides the license information for
the NetView product.

v Program Directory for IBM Tivoli NetView for z/OS US English, GI10-3194, contains
information about the material and procedures that are associated with installing
the IBM Tivoli NetView for z/OS product.

v Program Directory for IBM Tivoli NetView for z/OS Japanese, GI10-3210, contains
information about the material and procedures that are associated with installing
the IBM Tivoli NetView for z/OS product.

v IBM Tivoli NetView for z/OS V5R4 Online Library, SK2T-6175, contains the
publications that are in the NetView for z/OS library. The publications are
available in PDF, HTML, and BookManager® formats.

Related publications
To use the information in this publication effectively, you need some additional
knowledge, which you can obtain from the following publications:
v Systems Network Architecture Formats, GA27-3136-19

Provides information about the IBM Systems Network Architecture (SNA)
formats, including those used between subarea nodes, between subarea nodes
and peripheral nodes, and between nodes that implement Advanced
Peer-to-Peer Networking or low-entry networking (LEN) protocols.

v SNA/Management Services Alert Implementation Guide, GC31-6809-00
Provides information about the alert mechanism defined by SNA/Management
Services as well as information about how to construct an alert.

You can find additional product information on the NetView for z/OS Web site:

http://www.ibm.com/software/tivoli/products/netview-zos/

For information about the NetView Bridge function, see Tivoli NetView for OS/390
Bridge Implementation, SC31-8238-03 (available only in the V1R4 library).

Accessing terminology online
The Tivoli Software Glossary includes definitions for many of the technical terms
related to Tivoli software. The Tivoli Software Glossary is available at the following
Tivoli software library Web site:

http://publib.boulder.ibm.com/tividd/glossary/tivoliglossarymst.htm

The IBM Terminology Web site consolidates the terminology from IBM product
libraries in one convenient location. You can access the Terminology Web site at the
following Web address:

http://www.ibm.com/software/globalization/terminology/

For a list of NetView for z/OS terms and definitions, refer to the IBM Terminology
Web site. The following terms are used in this library:

NetView
For the following products:
v Tivoli NetView for z/OS version 5 release 4
v Tivoli NetView for z/OS version 5 release 3
v Tivoli NetView for z/OS version 5 release 2
v Tivoli NetView for z/OS version 5 release 1
v Tivoli NetView for OS/390® version 1 release 4

About this publication xi

|

http://www.ibm.com/software/tivoli/products/netview-zos/
http://publib.boulder.ibm.com/tividd/glossary/tivoliglossarymst.htm
http://www.ibm.com/software/globalization/terminology/

MVS For z/OS operating systems

MVS element
For the BCP element of the z/OS operating system

CNMCMD
For the CNMCMD member and the members that are included in it using
the %INCLUDE statement

CNMSTYLE
For the CNMSTYLE member and the members that are included in it using
the %INCLUDE statement

PARMLIB
For SYS1.PARMLIB and other data sets in the concatenation sequence

Unless otherwise indicated, references to programs indicate the latest version and
release of the programs. If only a version is indicated, the reference is to all
releases within that version.

When a reference is made about using a personal computer or workstation, any
programmable workstation can be used.

Using NetView for z/OS online help
The following types of NetView for z/OS mainframe online help are available,
depending on your installation and configuration:
v General help and component information
v Command help
v Message help
v Sense code information
v Recommended actions

Using LookAt to look up message explanations
LookAt is an online facility that you can use to look up explanations for most of
the IBM messages you encounter, and for some system abends and codes. Using
LookAt to find information is faster than a conventional search because, in most
cases, LookAt goes directly to the message explanation.

You can use LookAt from the following locations to find IBM message
explanations for z/OS elements and features, z/VM®, VSE/ESA, and Clusters for
AIX® and Linux® systems:
v The Internet. You can access IBM message explanations directly from the LookAt

Web site at http://www.ibm.com/systems/z/os/zos/bkserv/lookat/ .
v Your z/OS TSO/E host system. You can install code on your z/OS or z/OS.e

system to access IBM message explanations, using LookAt from a TSO/E
command line (for example, TSO/E prompt, ISPF, or z/OS UNIX® System
Services running OMVS).

v Your Microsoft® Windows® workstation. You can install LookAt directly from the
z/OS Collection (SK3T-4269) or the z/OS and Software Products DVD Collection
(SK3T-4271) and use it from the resulting Windows graphical user interface
(GUI). The command prompt (also known as the DOS command line) version
can still be used from the directory in which you install the Windows version of
LookAt.

v Your wireless handheld device. You can use the LookAt Mobile Edition from
http://www.ibm.com/systems/z/os/zos/bkserv/lookat/lookatm.html with a
handheld device that has wireless access and an Internet browser.

xii Application Programmer’s Guide

http://www.ibm.com/systems/z/os/zos/bkserv/lookat/
http://www.ibm.com/systems/z/os/zos/bkserv/lookat/lookatm.html

You can obtain code to install LookAt on your host system or Microsoft Windows
workstation from the following locations:
v A CD in the z/OS Collection (SK3T-4269).
v The z/OS and Software Products DVD Collection (SK3T-4271).
v The LookAt Web site. Click Download and then select the platform, release,

collection, and location that you want. More information is available in the
LOOKAT.ME files that is available during the download process.

Accessing publications online
The documentation DVD, IBM Tivoli NetView for z/OS V5R4 Online Library,
SK2T-6175, contains the publications that are in the product library. The
publications are available in PDF, HTML, and BookManager formats. Refer to the
readme file on the DVD for instructions on how to access the documentation.

IBM posts publications for this and all other Tivoli products, as they become
available and whenever they are updated, to the Tivoli Information Center Web
site at http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp.

Note: If you print PDF documents on other than letter-sized paper, set the option
in the File → Print window that enables Adobe® Reader to print letter-sized
pages on your local paper.

Ordering publications
You can order many Tivoli publications online at
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss

You can also order by telephone by calling one of these numbers:
v In the United States: 800-879-2755
v In Canada: 800-426-4968

In other countries, contact your software account representative to order Tivoli
publications. To locate the telephone number of your local representative, perform
the following steps:
1. Go to http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss.
2. Select your country from the list and click Go.
3. Click About this site to see an information page that includes the telephone

number of your local representative.

Accessibility
Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully. Standard shortcut
and accelerator keys are used by the product and are documented by the operating
system. Refer to the documentation provided by your operating system for more
information.

For additional information, see the Accessibility appendix in the User’s Guide:
NetView.

Tivoli technical training
For Tivoli technical training information, refer to the following IBM Tivoli
Education Web site at http://www.ibm.com/software/tivoli/education.

About this publication xiii

http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.ibm.com/software/tivoli/education

Downloads
Clients and agents, NetView product demonstrations, and several free NetView
applications can be downloaded from the NetView for z/OS support Web site:

http://www.ibm.com/software/sysmgmt/products/support/
IBMTivoliNetViewforzOS.html

In the ″IBM Tivoli for NetView for z/OS support″ pane, click Download to go to a
page where you can search for or select downloads.

These applications can help with the following tasks:
v Migrating customization parameters and initialization statements from earlier

releases to the CNMSTUSR member and command definitions from earlier
releases to the CNMCMDU member.

v Getting statistics for your automation table and merging the statistics with a
listing of the automation table

v Displaying the status of a job entry subsystem (JES) job or canceling a specified
JES job

v Sending alerts to the NetView program using the program-to-program interface
(PPI)

v Sending and receiving MVS commands using the PPI
v Sending Time Sharing Option (TSO) commands and receiving responses

Support for problem solving
If you have a problem with your IBM software, you want to resolve it quickly. IBM
provides the following ways for you to obtain the support you need:

Online
Go to the IBM Software Support site at
http://www.ibm.com/software/support/probsub.html and follow the
instructions.

IBM Support Assistant
The IBM Support Assistant (ISA) is a free local software serviceability
workbench that helps you resolve questions and problems with IBM
software products. The ISA provides quick access to support-related
information and serviceability tools for problem determination. To install
the ISA software, go to http://www.ibm.com/software/support/isa/.

Troubleshooting information
For more information about resolving problems with the NetView for z/OS
product, see the IBM Tivoli NetView for z/OS Troubleshooting Guide.
Additional support for the NetView for z/OS product is available through
the NetView user group on Yahoo at
http://groups.yahoo.com/group/NetView/. This support is for NetView
for z/OS customers only, and registration is required. This forum is
monitored by NetView developers who answer questions and provide
guidance. When a problem with the code is found, you are asked to open
an official problem management record (PMR) to obtain resolution.

Conventions used in this publication
This publication uses several conventions for special terms and actions, operating
system-dependent commands and paths, and command syntax.

xiv Application Programmer’s Guide

http://www.ibm.com/software/sysmgmt/products/support/IBMTivoliNetViewforzOS.html
http://www.ibm.com/software/sysmgmt/products/support/IBMTivoliNetViewforzOS.html
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/isa/
http://groups.yahoo.com/group/NetView/

Typeface conventions
This publication uses the following typeface conventions:

Bold

v Lowercase commands and mixed case commands that are otherwise
difficult to distinguish from surrounding text

v Interface controls (check boxes, push buttons, radio buttons, spin
buttons, fields, folders, icons, list boxes, items inside list boxes,
multicolumn lists, containers, menu choices, menu names, tabs, property
sheets), labels (such as Tip:, and Operating system considerations:)

v Keywords and parameters in text

Italic

v Citations (examples: titles of publications, diskettes, and CDs
v Words defined in text (example: a nonswitched line is called a

point-to-point line)
v Emphasis of words and letters (words as words example: "Use the word

that to introduce a restrictive clause."; letters as letters example: "The
LUN address must start with the letter L.")

v New terms in text (except in a definition list): a view is a frame in a
workspace that contains data.

v Variables and values you must provide: ... where myname represents...

Monospace

v Examples and code examples
v File names, programming keywords, and other elements that are difficult

to distinguish from surrounding text
v Message text and prompts addressed to the user
v Text that the user must type
v Values for arguments or command options

Operating system-dependent variables and paths
For workstation components, this publication uses the UNIX convention for
specifying environment variables and for directory notation.

When using the Windows command line, replace $variable with %variable% for
environment variables and replace each forward slash (/) with a backslash (\) in
directory paths. The names of environment variables are not always the same in
the Windows and UNIX environments. For example, %TEMP% in Windows
environments is equivalent to $TMPDIR in UNIX environments.

Note: If you are using the bash shell on a Windows system, you can use the UNIX
conventions.

Syntax diagrams
Read syntax diagrams from left-to-right, top-to-bottom, following the horizontal
line (the main path). This section describes how syntax elements are shown in
syntax diagrams.

Symbols
The following symbols are used in syntax diagrams:

�� Marks the beginning of the command syntax.

About this publication xv

� Indicates that the command syntax is continued.

| Marks the beginning and end of a fragment or part of the command
syntax.

�� Marks the end of the command syntax.

Parameters
The following types of parameters are used in syntax diagrams:

Required Required parameters are shown on the main path.

Optional Optional parameters are shown below the main path.

Default Default parameters are shown above the main path. In parameter
descriptions, default parameters are underlined.

Syntax diagrams do not rely on highlighting, brackets, or braces. In syntax
diagrams, the position of the elements relative to the main syntax line indicates
whether an element is required, optional, or the default value.

Parameters are classified as keywords or variables. Keywords are shown in
uppercase letters. Variables, which represent names or values that you supply, are
shown in lowercase letters and are either italicized or, in NetView help and
BookManager publications, displayed in a differentiating color.

In the following example, the USER command is a required keyword parameter,
user_id is a required variable parameter, and password is an optional variable
parameter.

�� USER user_id
password

��

Punctuation and parentheses
You must include all punctuation that is shown in the syntax diagram, such as
colons, semicolons, commas, minus signs, and both single and double quotation
marks.

When an operand can have more than one value, the values typically are enclosed
in parentheses and separated by commas. For a single value, the parentheses
typically can be omitted. For more information, see “Multiple operands or values”
on page xviii.

If a command requires positional commas to separate keywords and variables, the
commas are shown before the keywords or variables.

When examples of commands are shown, commas are also used to indicate the
absence of a positional operand. For example, the second comma indicates that an
optional operand is not being used:
COMMAND_NAME opt_variable_1,,opt_variable_3

You do not need to specify the trailing positional commas. Trailing positional and
non-positional commas either are ignored or cause a command to be rejected.
Restrictions for each command state whether trailing commas cause the command
to be rejected.

xvi Application Programmer’s Guide

Abbreviations
Command and keyword abbreviations are listed in synonym tables after each
command description.

Syntax examples
This section show examples for the different uses of syntax elements.

Required syntax elements: Required keywords and variables are shown on the
main syntax line. You must code required keywords and variables.

�� REQUIRED_KEYWORD required_variable ��

If multiple mutually exclusive required keywords or variables are available to
choose from, they are stacked vertically in alphanumeric order.

�� REQUIRED_OPERAND_OR_VALUE_1
REQUIRED_OPERAND_OR_VALUE_2

��

Optional syntax elements: Optional keywords and variables are shown below the
main syntax line. You can choose not to code optional keywords and variables.

��
OPTIONAL_OPERAND

��

If multiple mutually exclusive optional keywords or variables are available to
choose from, they are stacked vertically in alphanumeric order below the main
syntax line.

��
OPTIONAL_OPERAND_OR_VALUE_1
OPTIONAL_OPERAND_OR_VALUE_2

��

Default keywords and values: Default keywords and values are shown above the
main syntax line in one of the following ways:
v A default keyword is shown only above the main syntax line. You can specify

this keyword or allow it to default. The following syntax example shows the
default keyword KEYWORD1 above the main syntax line and the rest of the
optional keywords below the main syntax line.

v If an operand has a default value, the operand is shown both above and below
the main syntax line. A value below the main syntax line indicates that if you
specify the operand, you must also specify either the default value or another
value shown. If you do not specify the operand, the default value above the
main syntax line is used. The following syntax example shows the default values
for operand OPTION=* above and below the main syntax line.

�� COMMAND_NAME
,KEYWORD1

,KEYWORD2
,KEYWORD3
,KEYWORD4

,OPTION=*

,OPTION= *
VALUE1
VALUE2

��

About this publication xvii

Multiple operands or values: An arrow returning to the left above a group of
operands or values indicates that more than one can be selected or that a single
one can be repeated.

��

�

,

REPEATABLE_OPERAND_OR_VALUE_1
REPEATABLE_OPERAND_OR_VALUE_2
REPEATABLE_OPERAND_OR_VALUE_3

�

,

KEYWORD=(value_n) ��

Syntax that is longer than one line: If a diagram is longer than one line, each line
that is to be continued ends with a single arrowhead and the following line begins
with a single arrowhead.

�� OPERAND_1 OPERAND_2 OPERAND_3 OPERAND_4 OPERAND_5 �

� OPERAND_6 OPERAND_7 OPERAND_8 ��

Syntax fragments: Some syntax diagrams contain syntax fragments, which are
used for lengthy, complex, or repeated sections of syntax. Syntax fragments follow
the main diagram. Each syntax fragment name is mixed case and is shown in the
main diagram and in the heading of the fragment. The following syntax example
shows a syntax diagram with two fragments that are identified as Fragment1 and
Fragment2.

�� COMMAND_NAME Fragment1
Fragment2

��

Fragment1

KEYWORD_A=valueA KEYWORD_B KEYWORD_C

Fragment2

KEYWORD_D KEYWORD_E=valueE KEYWORD_F

xviii Application Programmer’s Guide

Chapter 1. Understanding the NetView Program-to-Program
Interface

The program-to-program interface (PPI) runs as part of the IBM Tivoli NetView for
z/OS (NetView) subsystem address space. When an application calls the
program-to-program interface in MVS, the request is performed synchronously.

This chapter describes the following information:
v The functions of the program-to-program interface
v How applications pass requests to the program-to-program interface

This chapter does not describe how to build network management vector transport
(NMVT) or control point management service unit (CP-MSU) vectors.

Reference: Application programmers need to be familiar with the SNA
requirements in the following publications:
v Systems Network Architecture Formats

v SNA/Management Services Alert Implementation Guide

Note: Before you use the program-to-program interface, see Chapter 9,
“Programming Techniques,” on page 75.

How the Interface Works
The program-to-program (PPI) interface enables application programs to send
NMVT or CP-MSU formatted alerts to the NetView program and enables
application programs to send data buffers to, or receive data buffers from, other
application programs that are running in the same host as the NetView program.
An application program can send, receive, or do both.

The NetView program receives NMVT or CP-MSU formatted alerts and processes
them in the order of first in, first out. The NMVT or CP-MSU formatted alerts are
processed by the NetView hardware monitor, which provides functions such as:
v Filtering alerts
v Displaying alerts on the Alerts-Dynamic panel
v Logging the alerts in the hardware monitor database
v Forwarding the alerts to a focal point NetView program

Alerts and resolution vectors can also be processed by the NetView automation
table.

Figure 1 on page 2 shows examples of the following operations of the PPI:
v Program A sending an NMVT or CP-MSU formatted alert to the NetView

program
v The NetView program receiving an NMVT or CP-MSU formatted alert from its

buffer queue
v Programs B and W sending data buffers to Program Z
v Program Z receiving a data buffer from its buffer queue

© Copyright IBM Corp. 1997, 2009 1

Processing Requests
The PPI performs basic tasks called requests. Each program you write can contain
a series of requests. The PPI processes each request and generates a return code to
indicate the status of the request.

Your program uses a request parameter buffer (RPB) to send a request to the PPI
which uses the same RPB to send data back to your program. See “Building the
Request Buffer” on page 13 for more information about buffer creation.

The request types available for use with the PPI for MVS are listed in Table 1.

Table 1. Program-to-Program Interface Request Types for MVS

Request Type Description

1 Query the status of the PPI.

2 Query the status of a receiver program.

3 Obtain the address space control block (ASCB) and task control block
(TCB) addresses of the receiver.

4 Define and initialize a receiver.

9 Deactivate a receiver.

AlertFormatted
Alert

NMVT or
CP-MSU

Data
Buffer

Data
Buffer

Program A

Program B

Program Z

Formatted
Alert

NMVT or
CP-MSU

Data
Buffer

Program W

NetView
Alert
Receiver

Hardware
Monitor

NetView
Program-to-Program
Interface

Buffer Queue
for Program Z

Buffer

Buffer Queue
for NetView
Alert Receiver

NetView Program

Figure 1. Example of the Program-to-Program Interface

2 Application Programmer’s Guide

Table 1. Program-to-Program Interface Request Types for MVS (continued)

Request Type Description

10 Delete a receiver.

12 Send an NMVT or CP-MSU formatted alert to the NetView program.

14 Send a data buffer to a receiver program synchronously.

22 Receive a data buffer from the buffer queue.

23 Purge a data buffer from the buffer queue.

24 Wait for the receive or connect event control block (ECB) to be posted by
the PPI.

Creating Buffer Queues
Each receiver program, including the NetView alert receiver (NETVALRT), has a
buffer queue for temporarily storing incoming data buffers. These buffer queues
reside in the PPI. A sender program sends a data buffer to a receiver buffer queue,
and the receiver program retrieves the data buffer from the buffer queue.

When you define a program as a receiver (see “Request Type 4: Define and
Initialize a Receiver” on page 22), you also define the buffer queue limit. The buffer
queue limit is the maximum number of outstanding buffers that can be stored in
the receiver buffer queue. When the receiver buffer queue is full, sender programs
receive a return code of 35 when they attempt to send a buffer to the receiver
buffer queue.

Buffers are also queued for a receiver that becomes inactive. For example, if the
NetView alert receiver task, CNMCALRT, becomes inactive, its incoming buffers
are stored until CNMCALRT becomes active again.

The PPI allocates storage for a data buffer as the data buffer arrives in the buffer
queue.

Sending an NMVT or CP-MSU Formatted Alert
Each program you write contains one or more requests. For example, Figure 2
shows Program A sending an NMVT or CP-MSU formatted alert to the NetView
program. Program A is using:
v Request type 1 to query the PPI status. This is an optional request.
v Request type 12 to send the NMVT or CP-MSU formatted alert.

Program A

NetView
Alert
Receiver

Hardware
Monitor

NetView
Program-to-Program
Interface

Buffer Queue
for NetView
Alert Receiver

NMVT or CP-MSU
Request

Request Type 1

Request Type 12

NMVT or CP-MSU
Request

RC=10

R C = 0

Alert

NetView Program

Figure 2. Overview of Sending an NMVT or CP-MSU Formatted Alert

Chapter 1. Understanding the NetView Program-to-Program Interface 3

The NetView distribution tape provides examples of programs that send an NMVT
or CP-MSU formatted alert. See sample CNMS4287 for assembler, sample
CNMS4257 for C, and sample CNMS4227 for PL/I.

Sending a Data Buffer Synchronously
Figure 3 shows Program B synchronously sending a data buffer to the buffer queue
for Program Z. Program B is using:
v Request type 1 to query the PPI status. This is an optional request.
v Request type 2 to query the status of Program Z. This is an optional request.
v Request type 14 to send the data buffer.

The NetView distribution tape provides examples of programs that send a data
buffer. See sample CNMS4288 for assembler and sample CNMS4228 for PL/I.

Receiving a Data Buffer Synchronously
Figure 4 on page 5 shows Program Z receiving a data buffer from the Program Z
buffer queue. Program Z is using:
v Request type 1 to query the PPI status. This is an optional request.
v Request type 3 to obtain the ASCB and TCB addresses. This is an optional

request.
v Request type 4 to define itself as a receiver. The PPI returns the receiver ECB

address.
v Request type 22 to retrieve a data buffer from the buffer queue.
v Request type 9 to deactivate the receiver.

NetView
Program-to-Program
Interface

Request Type 1

RC =10

Request Type 2

RC=14

Request Type 14

Data Buffer

R C = 0

Program B

Buffer

Buffer Queue
for Program Z

Program Z

Data Buffer

Figure 3. Overview of Sending a Data Buffer Synchronously

4 Application Programmer’s Guide

The NetView distribution tape provides examples of programs, other than REXX,
that receive a data buffer. See sample CNMS4289 for assembler and sample
CNMS4229 for PL/I. For a REXX example, see “REXX Programming Examples” on
page 77.

How the Interface Works with Applications
This section applies to applications written in languages other than REXX. For
REXX programs, you can use DSIPHONE to access the program-to-program
interface. For information on coding DSIPHONE, see Chapter 3, “Using REXX to
Send Requests,” on page 35.

Each program you write must use the CALL statement to pass your requests to the
CNMCNETV module in the NetView subsystem. Control is returned to your
program immediately following the CALL statement. The CALL statement runs the
CNMCNETV module and passes the request parameter buffer.

The CNMCNETV module runs in 31-bit addressing mode only for MVS. Set the
high-order byte correctly for all addresses so that they are valid for 31-bit
addressing mode. Pass the addresses in registers 1, 13, 14, and 15.

You must either link edit the CNMCNETV module from the CNMLINK data set
into your application or load it from the SCNMLPA1 or LPALIB data set at
runtime. The advantage of loading the CNMCNETV module at runtime is that you
are assured of using the latest copy rather than having to relink your application
each time CNMCNETV changes due to the application of maintenance.

High-Level Language Programs
The following example shows the CALL statement for high-level languages, such
as PL/I and C, where rpb is the name of the request parameter buffer.

NetView
Program-to-Program
Interface

Program Z

Request Type 1

RC =10

Request Type 3

ASCB, TCB
R C = 0

Request Type 4

ECB Address
R C = 0

Request Type 22

Data Buffer
R C = 0

Request Type 9

R C = 0

Buffer

Figure 4. Overview of Receiving a Data Buffer Synchronously

Chapter 1. Understanding the NetView Program-to-Program Interface 5

|
|
|
|

|
|
|

|
|
|
|
|

CALL CNMCNETV (rpb)

For high-level language programs, you can link-edit the CNMCNETV module
during the link-edit step.

Assembler Programs
You can code the CALL statement in assembler in either of two ways:
v You can use the module name.

The following example shows using CNMCNETV in the CALL statement in
assembler, where rpb is the name of the request parameter buffer.

CALL CNMCNETV, (rpb)

v You can use the address of the module.
In the following example, rpb is the name of the request parameter buffer, and
nn is the register that contains the address of the CNMCNETV module.

CALL (nn), (rpb)

For assembler programs, you can use the LOAD macro to load the CNMCNETV
module into memory and then branch and link to the module. You can also
link-edit the CNMCNETV module. For more information about coding the CALL
statement in assembler, refer to the z/OS library.

Register Conventions
Programs written in high-level programming languages, such as C and PL/I, and
programs written in assembler can use the CALL interface if they support the
following register conventions expected by the CNMCNETV module:

Register 1 Points to a memory location that contains the address of the
request parameter buffer.

Register 13 Contains the address for the calling program’s 72-byte save area.

Register 14 Contains the return address for the calling program.

Register 15 Contains the entry address for the CNMCNETV module.

Program Placement
NetView application programs and other user programs running in any address
space can pass NMVT or CP-MSU formatted alerts to the NetView hardware
monitor for processing.

Additionally, a user program can send data buffers to (or receive data buffers
from) another user program running in any address space.

Note: Programs sending NMVT or CP-MSU formatted alerts to the NetView
program and sending and receiving data buffers need to reside in the host
system that is processing the NetView program.

Sending Commands and Messages to the NetView Program
Programs (clients) can use the following methods to send commands and messages
to the NetView program:
v CMDSERV

6 Application Programmer’s Guide

|

|
|

|

|
|

|

|
|
|
|

|

|

The CMDSERV interface is a command server designed to run on a NetView
autotask. The autotask accepts commands from an environment that has
established an identity to the security product (SAF) and is defined there as a
NetView user.

v APSERV
The APSERV interface is a command server that runs on a NetView autotask or
on a virtual OST (VOST). APSERV accepts commands or messages from APF
authorized programs only. Unlike CMDSERV, APSERV does not require the
client to register with a security product; instead, the client specifies the user ID
under which the command is to be authority checked.

Using the CMDSERV Interface
The CMDSERV interface receives NetView commands that are passed through the
NetView PPI. CMDSERV processes the command and returns the results through
the PPI to the originating program. See the IBM Tivoli NetView for z/OS Command
Reference Volume 1 (A-N) or the NetView online help for more information about
using the CMDSERV command.

One method for using the interface that the CMDSERV command sets up is to use
the NETVCMD (CNMS8029) utility. The following formats are used:

For TSO or REXX batch usage:

�� NETVCMD
SERVER=server_name CMDDLMTR=command_delimiter

�

� �

command_delimiter

NetView_command
timeout

��

For UNIX Usage:

�� NETVCMD
-s server_name -d command_delimiter

�

� �

command_delimiter

NetView_command
timeout

��

command_delimiter
Specifies the delimiter used to separate NetView commands when more than
one NetView command is entered, for example:
NETVCMD CMDDLMTR=/ LIST ''/ LIST OPER1

The default delimiter is the semicolon (;).

When running under a UNIX shell, you might need to use an escape character
before the delimiter or other characters. For example:
NETVCMD LIST \'\'\; LIST OPER1

Chapter 1. Understanding the NetView Program-to-Program Interface 7

||

||

Or the entire NETVCMD parameter list can be enclosed in quotation marks as
shown in the following example:
NETVCMD "LIST ''; LIST OPER1"

NetView_command
Indicates the NetView command to be issued.

server_name
Indicates the name of the server. If specified, this value must be the same name
used, or the default value, on the name parameter of the CMDSERV command
issued under the NetView program. If the server name is not specified, the
default value is DSICMDSV.

timeout
Specifies an optional timeout value in seconds to be applied to the command
that it precedes. The default is established by the NetView CCDEF command
because the command ultimately runs in a pipe with the CORRCMD stage.

Example: Issuing NetView Commands from TSO and UNIX: To issue a NetView
command from a TSO or UNIX command line, the PPI must be active and your
TSO or UNIX user ID must be defined in your security product and as a NetView
user. The NetView user ID must be authorized to issue the NetView commands
sent to the NetView program. Define the user as a NetView operator; for more
information about defining NetView operators, see the IBM Tivoli NetView for
z/OS Security Reference.

In this example, a REXX CLIST named NETVCMD is used to issue the NetView
LIST command. NETVCMD is a sample that is supplied with the NetView product
and can be found in CNMS8029. When the NetView command is issued,
server_name must either be the same as specified on CMDSERV
NAME=server_PPI_name or default to DSICMDSV.

From TSO, enter the following command:
NETVCMD SERVER=server_name LIST DEFAULTS

From UNIX, enter the following command:
NETVCMD -sserver_name LIST DEFAULTS

Using the APSERV Interface
The APSERV (CNMEAPCS) command sets up an interface that authorized
programs (clients) can use in the following ways:
v Run NetView or MVS commands under the authority of a specified NetView

operator
v Place a message in the netlog
v Route a message to a specified operator or to the authorized receiver

To use the APSERV interface, an authorized program sends a buffer over the PPI to
the specified receiver. The data sent over the PPI has the following format:

�� user_name;seqno; NetView_command
MVS any_command
-ROUTE target message
-FORLOG data_to_log

��

Notes:

1. Non-printable characters (00x - 3Fx) cannot be used with the APSERV interface.

8 Application Programmer’s Guide

|
|
|
|

|

|

2. If REXX is used, the authorized program can use the DSIPHONE subroutine to
transmit the data across the PPI. See Chapter 3, “Using REXX to Send
Requests,” on page 35.

user_name
The user_name variable can be one of the following names.
v A NetView function name beginning with the question mark character (?).
v A NetView Tivoli Enterprise Portal user ID as defined with the

NACMD.OPID.TEPLogonid statement in the CNMSTYLE member. A
NetView Tivoli Enterprise Portal user ID can be 1 - 10 characters in length
and can contain alphanumeric and the @, #, and $ characters.
Under certain conditions when user_name is a NetView Tivoli Enterprise
Portal user ID, the APSERV interface inserts records into NetView Tivoli
Enterprise Portal workspaces; see “Usage Notes” on page 10.

v A NetView operator ID. If the specified name is both a NetView Tivoli
Enterprise Portal user ID and a NetView operator ID, it is processed as a
NetView Tivoli Enterprise Portal user ID. Under certain conditions when
user_name is a NetView operator ID, the APSERV interface inserts records
into NetView Tivoli Enterprise Portal workspaces; see “Usage Notes” on
page 10.

When user_name is a NetView operator ID, the APSERV interface checks
whether the operator is logged on and, if not, causes an autotask with that ID
to be started. Currently, the NetView program does not recognize such an
autotask as attended. Users might want to adjust their IDLEOFF settings.
Commands are always queued at a low priority.

seqno
The seqno variable helps identify a particular transaction. The seqno can be 1 - 8
characters in length. It can contain alphanumeric and the @, #, and $
characters.

NetView_command
The NetView_command variable can be any regular NetView line mode
command. The APSERV interface processes commands subject to separate
authority checking. Do not send full-screen commands.

The first character of the command cannot be a dash or minus sign ('60'X).
Instead, use the PIPE CORRCMD stage.

MVS any_command
The any_command variable is the command to be submitted to the z/OS
operating system under the authority of the user name specified by the
user_name variable.

-ROUTE target message
The target variable is a valid argument for the PIPE ROUTE stage command.
At least one blank must follow the target variable. The message variable can be
any data except non-printable characters (00x - 3Fx). All blanks after the target
variable are discarded, and the remaining data is sent to the specified target.

-FORLOG data_to_log
When -FORLOG is specified, the user_name variable is ignored. The data_to_log
variable can be any data except non-printable characters (00x - 3Fx), up to 255
bytes, to be logged by the task. The task is indicated by the user_name variable
according to the DEFAULTS or OVERRIDE command settings in effect for that
task.

Chapter 1. Understanding the NetView Program-to-Program Interface 9

|

Note: The data is logged and is submitted to user exit 4, but it is not
submitted to other exits, message automation, ASSIGN processing, or
trap matching.

Usage Notes:

v For each NetView or MVS command received, the APSERV interface logs a
BNH806I message. The message origin (domain field) for this message contains
the SAF user name of the client sending the command. For the command echo,
the message origin lists the PPI name for the client.

v Messages generated by the APSERV interface are logged as usual for the
NetView task where they occur. Use the OVERRIDE NETLOG, SYSLOG, or
HCYLOG options as needed for each task. Command echoes and command
responses are logged at the target task specified by the client. Command
response messages are submitted to the automation table before being logged.
The BNH806I and error messages are logged at the autotask or VOST where
APSERV is running. See the OVERRIDE command for more information about
the options.

v The APSERV command is a long-running command. To end the command and
close the PPI receive, issue STOP FORCE=taskname specifying the task name of
the autotask. Stop a VOST with the DETACH command.

v If the APSERV command runs on an autotask (not a VOST), then ensure no
other function is assigned to that autotask. The APSERV command continuously
waits for input records.

v If the following conditions are met, the APSERV interface inserts records into the
NetView Tivoli Enterprise Portal workspaces:
– The TEMA tower is enabled.
– The NetView for z/OS enterprise management agent is active.
– One of the following conditions is true:

- user_name is a Tivoli Enterprise Portal user ID.
- user_name is a NetView operator ID, and the -TEMA option was specified

on the APSERV command; see the online help for more information about
the APSERV command.

The following records are inserted:
– The command echo and all correlated command responses received within 30

minutes of issuing the command are inserted into the NetView Command
Response workspace. Before insertion, these records are submitted to user
exits and message automation, either of which can alter or suppress messages.

– The BNH806I audit record is inserted into the NetView Audit Log workspace
before being submitted to user exits and message automation.

10 Application Programmer’s Guide

Chapter 2. Using High-Level Languages and Assembler to
Send Requests

This chapter contains instructions for enabling the PPI. This chapter also describes
the request parameter buffer fields and return codes associated with each request
type.

Enabling the Interface for MVS
For the NetView program to receive NMVT or CP-MSU formatted alerts, enable
the PPI in the following way:
1. Initialize the NetView subsystem address space. Refer to IBM Tivoli NetView for

z/OS Installation: Getting Started for more information.
2. Ensure that the NetView subsystem address space has a specified region size

large enough to hold the user data buffers that might be queued or stored in
the subsystem address space. The required storage depends on how many
receivers exist in the NetView subsystem address space. To estimate the
required storage:
a. Determine the storage required for each receiver, using the following

formula:
Average buffer size (bytes) X buffer queue limit (number of buffers)

b. Add the storage requirements for all the receivers to get an estimate of the
total storage required, in bytes.

Some of the NetView functions using the PPI can require larger buffer queue
lengths for the NetView and VTAM® PPI receivers. Refer to the storage
estimating information in the IBM Tivoli NetView for z/OS Tuning Guide to
determine storage requirements.

3. Review the NetView startup procedure before you start the PPI to determine
how the NetView subsystem address space is used. For more information about
the startup procedure, refer to the IBM Tivoli NetView for z/OS Installation:
Getting Started. See the CNMSJ010 sample on the NetView distribution tape for
an example of a NetView subsystem address space procedure.
When you use the PPI, set the MSGIFAC value to NOSSI and the PPIOPT
value to PPI. If you run the PPI and the SSI at the same time, use an MSGIFAC
value other than NOSSI and a PPIOPT value of PPI. Refer to the IBM Tivoli
NetView for z/OS Installation: Getting Started for information about the MSGIFAC
parameter.

4. Ensure that the PPI module resides in an MVS authorized program facility
(APF) authorized library if the PPI module is to be processed as an
APF-authorized program.

5. Enter the TRACEPPI command, if you want to enable the PPI trace facility. For
more information about the PPI trace facility, see Chapter 10, “Using the Trace
Facility,” on page 83. Refer to the NetView online help for information about
the TRACEPPI command.

6. Activate and enable the generalized trace facility (GTF) for PPI. For more
information, see Chapter 10, “Using the Trace Facility,” on page 83.

Note: Unpredictable results can occur, including system abends and lost data if
you stop the NetView subsystem address space before you stop all
applications that are using the address space.

© Copyright IBM Corp. 1997, 2009 11

Receiving Alerts
If the alert receiver task is started and the NetView subsystem or the DSICRTR
task is inactive, the alert receiver task issues messages CNM563I and DSI295I, and
waits until both the NetView subsystem and the DSICRTR task are active. To
enable the NetView program to receive NMVT or CP-MSU formatted alerts using
the PPI, complete the following steps:
1. Ensure that the PPI is fully initialized. See “Enabling the Interface for MVS” on

page 11.
2. Ensure that the NetView communication network management task (DSICRTR)

is active.
a. Issue the following command from the NetView command line to find the

status of the DSICRTR task:
LIST DSICRTR

b. Skip to step 3 if the status is ACTIVE.
c. Issue the following command if the status is INACTIVE:

START TASK=DSICRTR

Note: If multiple NetView programs are active, start the DSICRTR task only
in the NetView program that performs problem determination (the
network management NetView program).

3. Ensure that the NetView alert receiver task (CNMCALRT) is defined to the
NetView program and is started when the NetView program is started. If you
are not using the PPI to send NMVT or CP-MSU formatted alerts, defining or
starting the CNMCALRT task is not necessary.
a. Issue the following command from the NetView command line to find the

status of the CNMCALRT task:
LIST CNMCALRT

b. If the status is ACTIVE, the NetView program can receive NMVT or CP-MSU
formatted alerts and no further action is needed.

c. Issue the following command if the status is INACTIVE and you are using the
PPI to send NMVT or CP-MSU formatted alerts to the NetView program:
START TASK=CNMCALRT

Routing Alerts to Multiple Receivers
To route an alert to more than one NetView system through the PPI, use the
AlertRcvName statement in the CNMSTUSR or CxxSTGEN member to set a
different PPI alert receiver name on each NetView program. The default is
NETVALRT. For information about changing CNMSTYLE statements, see IBM
Tivoli NetView for z/OS Installation: Getting Started.

Use a request type 14 to send a data buffer to multiple alert receivers, specifying
the proper receiver ID in the RPB. Figure 5 on page 13 shows how alerts are routed
to multiple receivers. If you want to send an alert to multiple receivers, issue the
send to each of the receivers.

12 Application Programmer’s Guide

|
|

|
|

Building the Request Buffer
The request parameter buffer (RPB) is a 56-byte parameter list that you build for
each request. Your program uses an RPB to send a request to the PPI, and the PPI
uses the same RPB to return data to your program.

Using the RPB
The RPB fully describes your request by specifying items such as the request type
and the receiver or sender identification. For example, if you want to send a data
buffer to another user program, the RPB for your request type 14 contains the
receiving program’s identification, the sending program’s identification, the length
of the buffer you are sending, and the address to which the data buffer is sent.

In addition, the PPI uses fields in the RPB to return data to your program. For
example, when you use a request type 4 to define your program as a receiver, the
PPI returns the address of the receiver event control block (ECB) in the RPB. All
return codes are also returned in the RPB.

Each request needs a RPB. For each RPB you build, use only those fields that
apply to your request type. “Choosing the Request Type” on page 18 describes
which fields are required for each request type.

NetView Subsystem
Address Space 1

NetView Application
Address Space 1
(For Network)

NetView Subsystem
Address Space 2

NetView Application
Address Space
(For System)

No PPI

PPI

Application 2

Others

Alert
Receiver 2

Application 1

Hardware
Monitor

DSICRTR

DSICRTR

Hardware
Monitor

Alert
Receiver 1

Figure 5. Sending Alerts to Multiple Receivers through the PPI

Chapter 2. Using High-Level Languages and Assembler to Send Requests 13

Fields in the RPB
Table 2 lists the fields in the RPB. The Data Field names used in this table are for
descriptive purposes only. You are not required to use these names in your RPB.
The DTR Field name corresponds to the DSIDTR macro shipped as part of the
NetView macro set.

Macro DSIDTR includes two labels that can be used to determine the lengths of
either the 56-byte structure or the 96-byte structure (total length of the DTR
including those fields that occur following offset 56; see Table 2 to identify these
fields). User application code not utilizing those additional fields (that is, those that
occur following offset 56) can use DTREND to calculate the length of the 56 byte
RPB; if you use those additional fields, use DTREND1 to calculate total RPB length
of 96. Fields following offset 56 must be zeroed if not being initialized to valid
pointer values to ensure NetView code does not try to access an address that is not
valid. User code that employs DSIGET with the default option CLEAR=YES need
not specifically zero these fields, however code that requires a GETMAIN for
storage must be cautious of residual data in these fields.

Table 2. Request Parameter Buffer Fields

Bytes Data Field DTR Field Description

0–3 RPB-LEN DTRLEN Length of the request parameter buffer; this
field must be set to 56 the length of the fields
being used.

4, 5 TYPE DTRREQT Request type; a 2-byte integer value, for
example, 22. The request types are described
under “Processing Requests” on page 2.

6, 7 RECOPT DTRRECOP Recovery option indicator, which can have one
of the following values:
0 No recovery is requested.
1 ESTAE recovery is requested.
The ESTAE program isolates the user from
abends and protects the user program from
abnormally ending. If an error occurs while a
user program is using the PPI, the ESTAE
routine traps the error and sets a return code
that it passes to the user program, preventing
an abend. These return codes are described in
Appendix B, “Program-to-Program Interface
Return Codes,” on page 95.

ESTAE recovery is not available if the user
program is running in cross-memory mode.

For more information about the ESTAE routine,
refer to the z/OS library.

8–11 RETCODE DTRRETC 4-byte processing return code returned by the
PPI on every request type.

12–15 WORK-ADR DTRWKPTR Work storage address required by the NetView
service module, CNMCNETV. The work
storage must be 128 bytes for MVS.

14 Application Programmer’s Guide

|

Table 2. Request Parameter Buffer Fields (continued)

Bytes Data Field DTR Field Description

16–23 SENDER-ID DTRSDID Sender identification; 8-character identifier of
the sender program. The ID can contain
alphabetic characters A - Z, numeric characters
0 - 9, and the following special characters:
dollar sign ($), percent sign (%), ampersand
(&), at sign (@), and number sign (#). If the ID
is not 8 characters long, it must be left-justified
and padded with blanks on the right side.

16–19 ASCB-ADR DTRASCB Address space control block address; this is the
ASCB address of the receiver program. The PPI
returns this value on a request type 3.

Some programming languages do not provide
the mapping facilities for a receiver program to
determine what to specify in the ASCB-ADR
field. Therefore, the receiver program uses
request type 3 to determine this field.

If the address space with the specified
ASCB-ADR ends, the receiver status is set to
inactive.

20–23 ECB-ADR DTRECB Event control block address. The PPI returns
this value on request types 4 and 22 when the
buffer queue of the receiver has no buffers.

The PPI posts the receiver ECB when a data
buffer is received in the receiver buffer queue.
Your program can use a WAIT macro or a
request type 24 to wait for the PPI to post this
ECB. The post code is the lower 3 bytes of the
ECB.

When the NetView subsystem ends, the ECB is
posted with a post code of 99.

20–23 BUFFQ-L DTRBQL Buffer queue limit; the maximum number of
outstanding data buffers that can be accepted
for a receiver. This limit is defined in a request
type 4 when the receiver is activated. The limit
can be changed by a request type 9 when the
receiver is deactivated, or by another request
type 4 for that receiver.

A sender can send data buffers to an active or
inactive receiver as long as the receiver buffer
queue is not full. When the receiver buffer
queue is full, a sender program receives a
return code of 35 and the data buffer is not
accepted.

Chapter 2. Using High-Level Languages and Assembler to Send Requests 15

Table 2. Request Parameter Buffer Fields (continued)

Bytes Data Field DTR Field Description

24–31 RECEIVER-ID DTRRVID An 8-character identifier of the receiver
program. The ID can contain alphabetic
characters A - Z, numeric characters 0 - 9, and
the following special characters: dollar sign ($),
percent sign (%), ampersand (&), at sign (@),
and number sign (#). If the ID is not 8
characters long, it must be left-justified and
padded with blanks on the right side. The
NETVxxxx IDs are reserved for products
related to the NetView program. NETVALRT is
the ID of the NetView alert receiver task.

32–35 BUFF-LEN DTRUBL Buffer length; length of a data buffer or NMVT
or CP-MSU formatted alert.

For a request type 12 (sending an NMVT or
CP-MSU formatted alert), sender programs use
this field to specify the length of the NMVT or
CP-MSU formatted alert.

For a request type 14 (sending a data buffer),
sender programs use this field to specify the
length of the buffer.

For a request type 22 (receiving an incoming
data buffer), receiver programs use this field to
specify the length of the buffer into which the
incoming data buffer is to be copied. If the
value specified is not large enough, the return
code from the request type 22 is 31. If the
request type 22 is successful, the PPI uses this
field to return the actual length of the incoming
data buffer.

32, 33 AUTH-IND DTRAUTH Authorization indicator; specifies that a
receiver accepts data buffers only from an
APF-authorized receiver.

Receiver programs use this field in a request
type 4 (initializing the receiver). If this
indicator is set to 1, the receiver program is
defined as authorized, and a sender program
must be APF-authorized to send data buffers to
this receiver.

34
(bit 0)

BUFFER-Q-
FLAG

DTRBQFL Receiver’s buffer queue flag. Set on request
type 2 to indicate whether space is available on
the receiver’s buffer queue.
0 No space on the queue
1 Space available on the queue

36–39 BUFF-ADR DTRUBPTR Buffer address; data buffers are copied to (or
from) this address. Both sender and receiver
programs use this field.

16 Application Programmer’s Guide

|
|

Table 2. Request Parameter Buffer Fields (continued)

Bytes Data Field DTR Field Description

36–39 TCB-ADR DTRTCB Task control block address; the PPI returns this
value on a request type 3.

Some programming languages do not provide
the mapping facilities for a receiver program to
determine what to specify in the TCB-ADR
field. Therefore, the receiver program uses
request type 3 to determine this field.

If the TCB with specified TCB-ADR ends, the
receiver status is set to inactive.

40–45 Not used for MVS.

46, 47 CKBTS DTRCKBTS Request indicators.

46
(bit 0)

EX-ACT DTREACT Exclusive check for active receiver.

The receiver program uses this field in request
type 4 (see “Request Type 4: Define and
Initialize a Receiver” on page 22 for more
information). If this bit is on and the receiver
program is already active, a value of 16 is
returned in DTRRETC.

46
(bit 1)

VER-CHECK DTRVRCHK PPI version check.

Your program uses this field with request type
1 to perform a PPI version check. The PPI
returns a value in the DTRVERSN field
indicating the functional level of the PPI.

46
(bit 4)

MATCH-
SENDER-ID

DTRRCVNM If DTRSDNAM is not zero, receive or purge
buffers only from the sender ID indicated by
the DTRSDNAM token.

46
(bit 5)

MATCH-ASID DTRRCVAT If DTRSDAST is not zero, receive or purge
buffers only from the address space indicated
by the DTRSDAST token.

46
(bit 6)

MATCH-TCB DTRRCVTT If DTRSDTT is not zero, receive or purge
buffers only from the task indicated by the
DTRSDTT token.

48–51 PPI-VERSION DTRVERSN PPI version.

When the DTRVRCHK bit is set on for request
type 1, the PPI returns the functional level in
this field. The levels are:
0 NetView V2R3 or earlier releases
1 NetView V2R4 to TME 10 NetView for

OS/390 V1R1
2 Tivoli NetView for OS/390 V1R3 or

later releases

52–55 SAF-ADR DTRSAFWK Address of a 1024-byte work area required by a
send request which needs to communicate its
SAF ID to the receiver.

DTREND Label used to determine length of 56-byte
structure.

Chapter 2. Using High-Level Languages and Assembler to Send Requests 17

Table 2. Request Parameter Buffer Fields (continued)

Bytes Data Field DTR Field Description

56–63 SENDER-
SAF-ID

DTRSAFID Sender’s SAF ID, for senders which supply
DTRSAFWK - filled in by PPI on a receive
request. Binary zeroes are returned if no SAF
ID.

64–71 SENDER-
NAME/ID

DTRSDNAM Sender’s PPI name, same as DTRSDID - filled
in by PPI on a receive request. Can be set by
user prior to a PPI receive.

72–79 ASID–TOKEN DTRSDAST Address space token associated with the sender
- filled in by PPI on a receive request. Can be
set by user prior to a PPI receive.

80–95 TCB–TOKEN DTRSDTT Task token associated with the sender - filled in
by PPI on a receive request. Can be set by user
prior to a PPI receive.

DTREND1 End label of total 96-byte structure.

Choosing the Request Type
The request types are the building blocks of your programs. For each program you
write, perform the following steps:
1. Build the request parameter buffer (RPB) for each request you want to issue.
2. Build the NMVT or CP-MSU formatted alert or data buffers as appropriate.
3. Issue the CALL statement to pass each RPB and its associated NMVT or

CP-MSU formatted alert or data buffer to the CNMCNETV module.
4. Check the return code field in the RPB.

For a complete list of return codes generated by the PPI and their hexadecimal
equivalents, see Appendix B, “Program-to-Program Interface Return Codes,” on
page 95. Return code 20 is not a valid request type.

The remainder of this section is a description of each request type for MVS,
including the:
v RPB fields you specify in your program
v RPB fields that are returned by the PPI
v Return codes from the PPI

18 Application Programmer’s Guide

|
|

Request Type 1: Query the PPI Status
Request type 1 is used in both sender and receiver programs. Make the first
request in any program you write a request type 1 to query the PPI status. If the
PPI is not active, no requests are processed.

RPB Fields Specified in the Program

Bytes Data Field DTR Field

0–3 RPB-LEN DTRLEN

4, 5 TYPE DTRREQT

12–15 WORK-ADR DTRWKPTR

46 (bit 1) VER-CHECK DTRVRCHK

RPB Fields Returned by the Program-to-Program Interface

Bytes Data Field DTR Field

8–11 RETCODE DTRRETC

48–51 PPI-VERSION DTRVERSN

Return codes

Return Code Description

10 The PPI is available to process user requests.

24 The PPI is not active.

28 An active subsystem interface address space was found, but
an active PPI address space was not found.

90 A processing error has occurred.

Chapter 2. Using High-Level Languages and Assembler to Send Requests 19

Request Type 2: Query a Receiver’s Status
Request type 2 is used in both sender and receiver programs. A request type 2
determines the status of the receiver you specify in the RPB. A receiver’s status can
be active, inactive, or undefined. You can send data buffers to an active or inactive
receiver, as long as the receiver buffer queue is not full, but you cannot send data
buffers to an undefined receiver.

RPB Fields Specified in the Program

Bytes Data Field DTR Field

0–3 RPB-LEN DTRLEN

4, 5 TYPE DTRREQT

12–15 WORK-ADR DTRWKPTR

24–31 RECEIVER-ID DTRRVID

RPB Fields Returned by the Program-to-Program Interface

Bytes Data Field DTR Field

8–11 RETCODE DTRRETC

34 (bit 0) BUFFER-Q-FLAG DTRBQFL

Return codes

Return Code Description

14 The receiver program is active.

15 The receiver program is inactive.

22 The program issuing this request is not running in primary
addressing mode.

24 The PPI is not active.

26 The receiver program is not defined.

28 An active subsystem interface address space was found, but
an active PPI address space was not found.

40 Receiver ID is not valid.

90 A processing error has occurred.

Usage Notes
v The RECEIVER-ID for the NetView alert receiver task is NETVALRT.
v You can use a request type 2 to query the status of this task.

20 Application Programmer’s Guide

Request Type 3: Obtain the ASCB and TCB Addresses
Request type 3 is used in receiver programs. When the request type 3 completes
successfully, the NetView program returns the addresses of the ASCB and the TCB
into the fields ASCB-ADR and TCB-ADR respectively.

The NetView program uses the ASCB-ADR like a password. When you define a
receiver (request type 4), you must specify the ASCB-ADR. Any subsequent request
to receive a data buffer (request type 22), to deactivate the receiver (request type 9),
or to reset the buffer queue limit (request type 4) must include this ASCB-ADR. If
the ASCB-ADR is not correct in a subsequent request, the NetView program does
not process that request.

RPB Fields Specified in the Program

Bytes Data Field DTR Field

0–3 RPB-LEN DTRLEN

4, 5 TYPE DTRREQT

12–15 WORK-ADR DTRWKPTR

RPB Fields Returned by the Program-to-Program Interface

Bytes Data Field DTR Field

8–11 RETCODE DTRRETC

16–19 ASCB-ADR DTRASCB

36–39 TCB-ADR DTRTCB

Return codes

Return Code Description

0 The request completed successfully.

22 The program issuing this request is not running in primary
addressing mode.

24 The PPI is not active.

28 An active subsystem interface address space was found, but
an active PPI address space was not found.

Usage Notes
Use request type 3 if your programming language does not provide the mapping
facilities to determine the ASCB and TCB addresses.

Chapter 2. Using High-Level Languages and Assembler to Send Requests 21

Request Type 4: Define and Initialize a Receiver
Request type 4 defines your program as a receiver and sets its status to active. Use
this request type to reset the buffer queue limit.

RPB Fields Specified in the Program

Bytes Data Field DTR Field

0–3 RPB-LEN DTRLEN

4, 5 TYPE DTRREQT

6, 7 RECOPT DTRRECOP

12–15 WORK-ADR DTRWKPTR

16–19 ASCB-ADR DTRASCB

20–23 BUFFQ-L DTRBQL

24–31 RECEIVER-ID DTRRVID

32, 33 AUTH-IND DTRAUTH

36–39 TCB-ADR DTRTCB

46 (bit 0) EX-ACT DTREACT

RPB Fields Returned by the Program-to-Program Interface

Bytes Data Field DTR Field

8–11 RETCODE DTRRETC

20–23 ECB-ADR DTRECB

Return codes

Return Code Description

0 The request completed successfully.

16 The receiver program is already active.

22 The program issuing this request is not running in primary
addressing mode.

24 The PPI is not active.

28 An active subsystem interface address space was found, but
an active PPI address space was not found.

32 No NetView storage is available.

36 ESTAE recovery cannot be established as requested.

40 RECEIVER-ID is not valid.

90 A processing error has occurred.

Usage Notes
v The BUFFQ-L field specifies the maximum number of outstanding buffers that a

receiver buffer queue can have in storage. You can also change the BUFFQ-L
when the receiver is deactivated (request type 9).

v A change in buffer queue limit does not affect buffers already in the queue. That
is, if the limit is decreased, buffers already in the queues are not lost. However,
any new buffers that arrive for the receiver are rejected if any existing buffers
have reached or exceeded the buffer queue limit.

22 Application Programmer’s Guide

v The ECB-ADR field contains the address of the receiver’s 4-byte event control
block (ECB). The address is returned by the PPI. The PPI posts the ECB to notify
a receiver that a data buffer has arrived in the receiver buffer queue.

v Your program can use a WAIT macro to wait for the PPI to post the receiver
ECB. If a WAIT macro is not available, your program can use a request type 24
to wait for the PPI to post the receiver ECB.

v The AUTH-IND field specifies that this receiver program accepts data buffers
from APF-authorized programs only.

v You can adjust the buffer queue limit while the system is running by reissuing a
request type 4 (define and initialize a receiver) with a different BUFFQ-L value.
The receiver program, or any other program, can perform this adjustment if you
specify all the RPB fields. The EX-ACT value must be zero. You receive return
code 0 even though the receiver program is already active.

v When the EX-ACT field is set on, it specifies the performance of an exclusive
check for an active receiver program. You receive return code 16 if the receiver
program is already active.

v When the ECB post code is zero, data buffers are waiting to be processed by the
receiver. When the post code is 99, the PPI is ending. The post code is located in
the lower 3 bytes of the receiver ECB.

v ASCB-ADR is a required field for request type 4. ASCB-ADR must contain the
address of a valid ASCB. All subsequent requests by the receiver program must
include this same ASCB address. The PPI cannot verify the validity of the ASCB
address. The receiver program must ensure that it submits a valid ASCB-ADR.

v If the ASCB-ADR field is 0, the receive ECB is not posted when the PPI receives
a data buffer for that receiver, or when the PPI ends.

Chapter 2. Using High-Level Languages and Assembler to Send Requests 23

Request Type 9: Deactivate a Receiver
Request type 9 sets the receiver status to inactive. You can also reset the buffer
queue limit when you deactivate the receiver.

RPB Fields Specified in the Program

Bytes Data Field DTR Field

0–3 RPB-LEN DTRLEN

4, 5 TYPE DTRREQT

6, 7 RECOPT DTRRECOP

12–15 WORK-ADR DTRWKPTR

16–19 ASCB-ADR DTRASCB

20–23 BUFFQ-L DTRBQL

24–31 RECEIVER-ID DTRRVID

RPB Fields Returned by the Program-to-Program Interface

Bytes Data Field DTR Field

8–11 RETCODE DTRRETC

Return codes

Return Code Description

0 The request completed successfully.

15 The receiver program is inactive.

22 The program issuing this request is not running in primary
addressing mode.

24 The PPI is not active.

25 The ASCB address is not correct.

26 The receiver program is not defined.

28 An active subsystem interface address space was found, but
an active PPI address space was not found.

36 ESTAE recovery cannot be established as requested.

40 RECEIVER-ID is not valid.

90 A processing error has occurred.

Usage Notes
v Ensure that your program issues a request type 9 before it ends.
v If you do not set the buffer queue limit, it is automatically set to an

unpredictable limit.
v The ASCB-ADR for this request must be the same as that specified for request

type 4 for this receiver.

24 Application Programmer’s Guide

Request Type 10: Delete a Receiver
Request type 10 deletes an active receiver from the program-to-program interface
and deletes the receiver’s buffers from the buffer queue.

RPB Fields Specified in the Program

Bytes Data Field DTR Field

0–3 RPB-LEN DTRLEN

4, 5 TYPE DTRREQT

6, 7 RECOPT DTRRECOP

12–15 WORK-ADR DTRWKPTR

16–19 ASCB-ADR DTRASCB

24–31 RECEIVER-ID DTRRVID

RPB Fields Returned by the Program-to-Program Interface

Bytes Data Field DTR Field

8–11 RETCODE DTRRETC

Return codes

Return Code Description

0 The request completed successfully.

15 The receiver program is inactive.

22 The program issuing this request is not running in primary
addressing mode.

24 The PPI is not active.

25 The ASCB address is not correct.

26 The receiver program is not defined.

28 An active subsystem interface address space was found, but
an active PPI address space was not found.

36 ESTAE recovery cannot be established as requested.

40 RECEIVER-ID is not valid.

90 A processing error has occurred.

Usage Notes
The ASCB-ADR for this request must be the same as that specified in request type
4 for this receiver.

Chapter 2. Using High-Level Languages and Assembler to Send Requests 25

Request Type 12: Send an NMVT or CP-MSU Formatted Alert
to the NetView
Program

Request type 12 is used in sender programs. Request type 12 tells the
program-to-program interface that the data buffer you are sending is an NMVT or
CP-MSU formatted alert and that the receiver is the NetView alert receiver
(NETVALRT). You do not need to specify a RECEIVER-ID in this RPB.

RPB Fields Specified in the Program

Bytes Data Field DTR Field

0–3 RPB-LEN DTRLEN

4, 5 TYPE DTRREQT

6, 7 RECOPT DTRRECOP

12–15 WORK-ADR DTRWKPTR

16–23 SENDER-ID DTRSDID

32–35 BUFF-LEN DTRUBL

36–39 BUFF-ADR DTRUBPTR

52–55 SAF-ADR DTRSAFWK

RPB Fields Returned by the Program-to-Program Interface

Bytes Data Field DTR Field

8–11 RETCODE DTRRETC

56–63 SENDER-SAF-ID DTRSAFID

Return codes

Return Code Description

0 The request completed successfully.

4 The specified receiver is not active. The PPI has received a
copy of the NMVT or CP-MSU.

22 The program issuing this request is not running in primary
addressing mode.

24 The PPI is not active.

26 The receiver program task is not defined.

28 An active subsystem interface address space was found, but
an active PPI address space was not found.

32 No NetView storage is available.

33 The buffer length is not valid.

35 The receiver buffer queue is full.

36 ESTAE recovery cannot be established as requested.

40 SENDER-ID is not valid.

90 A processing error has occurred.

26 Application Programmer’s Guide

Usage Notes
v An NMVT or CP-MSU formatted alert has no length restriction. An alert must

include an NMVT or CP-MSU header.
v Control is returned to your program immediately after the NMVT or CP-MSU

buffer is copied into the PPI.
v The PPI does not release the storage for the buffer. Your program must release

this storage.
v The buffer queue limit for the NetView alert receiver is 1000 NMVT or CP-MSU

formatted alerts. If this limit is exceeded, your buffer is not accepted. If you
receive a return code of 22 or greater for the request type 12, the buffer has not
been sent to the PPI.

v The SENDER-ID is used as the resource name on the hardware monitor
Alerts-Dynamic panel. If the hardware monitor hierarchy/resource list subvector
(X'05') exists in the NMVT or CP-MSU formatted alert buffer, the resource name
specified in this subvector is used instead of the SENDER-ID as the resource
name on the Alerts-Dynamic panel.

Chapter 2. Using High-Level Languages and Assembler to Send Requests 27

Request Type 14: Send a Data Buffer to a Receiver
Synchronously

Request type 14 is used in sender programs. With a request type 14, you can send
a data buffer to the program you specify in the RECEIVER-ID field.

RPB Fields Specified in the Program

Bytes Data Field DTR Field

0–3 RPB-LEN DTRLEN

4, 5 TYPE DTRREQT

6, 7 RECOPT DTRRECOP

12–15 WORK-ADR DTRWKPTR

16–23 SENDER-ID DTRSDID

24–31 RECEIVER-ID DTRRVID

32–35 BUFF-LEN DTRUBL

36–39 BUFF-ADR DTRUBPTR

52–55 SAF-ADR DTRSAFWK

RPB Fields Returned by the Program-to-Program Interface

Bytes Data Field DTR Field

8–11 RETCODE DTRRETC

56–63 SENDER–SAF–ID DTRSAFID

Return codes

Return Code Description

0 The request completed successfully.

4 The specified receiver is not active. The PPI has received a
copy of the data buffer.

22 The program issuing this request is not running in primary
addressing mode.

23 The sender program is not authorized.

24 The PPI is not active.

26 The receiver program is not defined.

28 An active subsystem interface address space was found, but
an active PPI address space was not found.

32 NetView storage is not available.

33 The buffer length is not valid.

35 The receiver buffer queue is full.

36 ESTAE recovery cannot be established as requested.

40 SENDER-ID or RECEIVER-ID is not valid.

90 A processing error has occurred.

28 Application Programmer’s Guide

Usage Notes
v Your program must be APF-authorized to send a data buffer to an authorized

receiver. A receiver is defined as authorized by the AUTH-IND field for the
request type 4 that initialized the receiver.

v Following the CALL, control is returned to your program immediately after the
data buffer has been copied into the receiver buffer queue in the PPI.

v The NetView program does not release the storage for the user data buffer. Your
program must release this storage.

Chapter 2. Using High-Level Languages and Assembler to Send Requests 29

Request Type 22: Receive a Data Buffer
Request type 22 is used in receiver programs. A request type 22 receives one data
buffer from the receiver buffer queue.

RPB Fields Specified in the Program

Bytes Data Field DTR Field

0–3 RPB-LEN DTRLEN

4, 5 TYPE DTRREQT

6, 7 RECOPT DTRRECOP

12–15 WORK-ADR DTRWKPTR

16–19 ASCB-ADR DTRASCB

24–31 RECEIVER-ID DTRRVID

32–35 BUFF-LEN DTRUBL

36–39 BUFF-ADR DTRUBPTR

46–47 CKBTS DTRCKBTS

64–71 SENDER’S-NAME/ID DTRSDNAM

72–79 ASID-TOKEN DTRSDAST

80–95 TCB-TOKEN DTRSDTT

RPB Fields Returned by the Program-to-Program Interface

Bytes Data Field DTR Field

8–11 RETCODE DTRRETC

16–23 1 SENDER-ID DTRSDID

20–23 1 ECB-ADR DTRECB

32–35 BUFF-LEN DTRUBL

56–63 SENDER-SAF-ID DTRSAFID

64–71 SENDER’S-NAME/ID DTRSDNAM

72–79 ASID-TOKEN DTRSDAST

80–95 TCB-TOKEN DTRSDTT

Notes:

1. One or the other of these fields can be returned, but not both.

Return codes

Return Code Description

0 The request completed successfully.

22 The program issuing this request is not running in primary
addressing mode.

24 The PPI is not active.

25 The ASCB address is not correct.

26 The receiver program is not defined.

28 An active subsystem interface address space was found, but
an active PPI address space was not found.

30 Application Programmer’s Guide

Return Code Description

30 Data buffer is not in the receiver buffer queue.

31 The receiver buffer is not large enough to receive the
incoming data buffer.

33 The buffer length is not valid.

36 ESTAE recovery cannot be established as requested.

40 SENDER-ID or RECEIVER-ID is not valid.

90 A processing error has occurred.

Usage Notes
v A receiver can receive one data buffer at a time from the receiver buffer queue in

the order of first in, first out (FIFO).
v If the request type 22 is successful, the PPI returns the identifier of the sending

program in the SENDER-ID field.
v If the return code is 30, the receiver program can use a request type 24 or a

WAIT function to wait until more data buffers are received in the receiver buffer
queue. The PPI posts the receiver ECB when the next buffer is received into the
receiver buffer queue.

v Ensure that the ASCB-ADR is the same as that specified in the request type 4
that defined this receiver.

v The PPI returns the length of the incoming buffer in the BUFF-LEN field. If the
return code is 31, the receiver program needs to allocate a larger buffer and
issue request type 22 again.

v Because the receive ECB is cleared whenever a request type 22 returns return
code 30, you do not usually need to clear it.

v The settings of CKBTS (byte 46 bit 4, bit 5, and bit 6) determine how buffers are
to be received. PPI receives can be done in FIFO order or they can be done by
the sender name, sender address space token, sender task token, or any
combination of the three. The DTRSDNAM, DTRSDASR, and DTRSDTT fields
are filled in on each receive independent of the DTRCKBTS settings. If you set
byte 46 bit 4, bit 5, or bit 6, store a value in the corresponding token field prior
to a receive unless you want to use the values from a previous operation. If one
or more of Byte 46 bits 4, 5, or 6 is set on a subsequent receive, the receive
returns data only from senders whose tokens match those indicated by the flags
and corresponding fields in the DTR.

Note: If the sender is running in SRB mode (as VTAM sometimes does), the
DTRSDTT field is set to binary zeros.

Chapter 2. Using High-Level Languages and Assembler to Send Requests 31

Request Type 23: Purge a Data Buffer
Request type 23 is used in receiver programs. With a request type 23, you can
purge a data buffer from the buffer queue.

RPB Fields Specified in the Program

Bytes Data Field DTR Field

0–3 RPB-LEN DTRLEN

4, 5 TYPE DTRREQT

6, 7 RECOPT DTRRECOP

12–15 WORK-ADR DTRWKPTR

16–19 ASCB-ADR DTRASCB

24–31 RECEIVER-ID DTRRVID

46–47 CKBTS DTRCKBTS

64–71 SENDER’S-NAME/ID DTRSDNAM

72–79 ASID-TOKEN DTRSDAST

80–95 TCB-TOKEN DTRSDTT

RPB Fields Returned by the Program-to-Program Interface

Bytes Data Field DTR Field

8–11 RETCODE DTRRETC

Return codes

Return Code Description

0 The request completed successfully.

22 The program issuing this request is not running in primary
addressing mode.

24 The PPI is not active.

25 The ASCB address is not correct.

26 The receiver program is not defined.

28 An active subsystem interface address space was found, but
an active PPI address space was not found.

30 Data buffer is not in the receiver buffer queue.

36 ESTAE recovery cannot be established as requested.

90 A processing error has occurred.

Usage Notes
v The ASCB-ADR for this request must be the same as that specified in the request

type 4 that defined this receiver.
v The settings of CKBTS (byte 46 bit 4, bit 5, and bit 6) determine how buffers are

to be purged. PPI purges can be done in FIFO order or they can be done by the
sender’s name, sender’s address space token, sender’s task token, or any
combination of the three. The DTRSDNAM, DTRSDASR, and DTRSDTT fields
are filled in on each purge independent of the DTRCKBTS settings. If you set
byte 46 bit 4, bit 5, or bit 6, then you must store a value in the corresponding

32 Application Programmer’s Guide

token field prior to a purge unless you want to use the values from a previous
operation. If one or more of byte 46 bits 4, 5, or 6 is set on a subsequent purge,
the purge purges data only from senders whose tokens match those indicated by
the flags and corresponding fields in the DTR.

Chapter 2. Using High-Level Languages and Assembler to Send Requests 33

Request Type 24: Wait for the Receive or Connect ECB
Request type 24 is used in receiver programs returning from the
program-to-program interface. A request type 24 functions as a wait macro. Use
this request if your programming language does not provide a WAIT function and
you want your receiver program to wait for the NetView program to post the
receiver ECB.

RPB Fields Specified in the Program

Bytes Data Field DTR Field

0–3 RPB-LEN DTRLEN

4, 5 TYPE DTRREQT

12–15 WORK-ADR DTRWKPTR

20–23 ECB-ADR DTRECB

RPB Fields Returned by the Program-to-Program Interface

Bytes Data Field DTR Field

8–11 RETCODE DTRRETC

Return codes

Return Code Description

0 The request completed successfully.

18 The receiver ECB is not zero.

22 The program issuing this request is not running in primary
addressing mode.

24 The PPI is not active.

28 An active subsystem interface address space was found, but
an active PPI address space was not found.

90 A processing error has occurred.

Usage Notes
v Use this request type only if your programming language does not have the

ability to wait on an ECB.
v The NetView program returns the ECB-ADR on the request type 4 that initializes

the receiver.
v You can use request type 24 after you receive a return code 30 in response to a

request type 22, indicating that your receiver program has received all available
data buffers. At that point, your receiver can end or wait for the PPI to post the
receiver ECB. The PPI posts the receiver ECB when the next data buffer is
received into the receiver buffer queue. You can receive the data buffer using a
request type 22.

v Results are unpredictable if the NetView subsystem address space ends while
your program is using a request type 24. The post might not occur.

v For applications using this request type running as a NetView application, run
them under a NetView optional task. If the application is run under a NetView
OST, AOST, or PPT task, DOM buffers might accumulate causing an
out-of-storage condition before the PPI wait is satisfied.

34 Application Programmer’s Guide

Chapter 3. Using REXX to Send Requests

DSIPHONE is a REXX external subroutine that you can use to send and receive
data across the NetView PPI.

DSIPHONE is used to return data back to the NetView program when commands
are issued to TSO using the PIPE TSO stage.

This function enables any z/OS application (capable of running REXX) to open,
close, send data to, or receive data from a PPI receiver. For a coding example that
defines a server and client application, see “REXX Programming Examples” on
page 77.

DSIPHONE is called as a subroutine or function, and requires parameters. It
cannot be used in the NetView program (use the PPI pipe stage instead).

The format for DSIPHONE follows.

DSIPHONE

DSIPHONE

�� CALL ’DSIPHONE’ ’VERSION’,’version’
’OPENRECV’,’receiver_name’
’AUTHRECV’,’receiver_name’
SEND
RECEIVE

’CLOSE’,’receiver_name’

��

SEND:

’SEND’,’receiver_name’,’data_var[.]’
,’sender_name’

RECEIVE:

’RECEIVE’,’receiver_name’,’data_var[.]’
,’sender_var’ ,wait

�

�
,’APPEND’ ,’safuid’ ,’from_only’

Notes:

1. Quotation marks are optional around the routine name, DSIPHONE, although
they are recommended. The absence of quotation marks means that REXX
attempts to resolve the routine call internally first.

2. If you do not specify a positional parameter, you must indicate its absence by
specifying a comma in its place.

© Copyright IBM Corp. 1997, 2009 35

REXX resolves values of variables passed as parameters and passes those values to
DSIPHONE. If the variable has not been defined, the name of the variable is
passed as the value. If the parameter is enclosed in quotation marks, the literal
value of that parameter is passed.

Parameters
VERSION

Return DSIPHONE version information in a REXX variable.

version
The name of a REXX variable into which the DSIPHONE version text string is
to be stored.

OPENRECV
Send a request to the PPI to define a new receiver.

AUTHRECV
Send a request to the PPI to define a new receiver that accepts data only from
an APF-authorized sender.

SEND
Send data to a PPI receiver.

RECEIVE
Receive a data buffer from a PPI sender.

CLOSE
Send a request to the PPI to close a receiver.

receiver_name
Name of a PPI receiver to which a SEND or RECEIVE request is directed.

sender_name
The originator of a PPI SEND request. This can be the name of the PPI receiver
that the sender defined to receive responses. This can be useful when used in
conjunction with the from_only parameter for client/server applications with
multiple clients.

data_var[.]
The name of a REXX variable [or stem] containing data either to be sent to a
PPI receiver with a SEND request or to be received from a RECEIVE request.
The presence of a period at the end of the name indicates to DSIPHONE that
the name is a stem. A period elsewhere in the name indicates a stem element
or a compound variable and is treated as a regular variable.

sender_var
The name of a REXX variable into which the sender’s PPI receiver name is to
be stored.

wait
A numeric value indicating the time (in seconds) to wait for a RECEIVE call to
be completed. By default, no time limit exists and DSIPHONE waits
indefinitely on a receive call. Any positive value specified for WAIT on a
receive call results in a timeout (rc=25) if data does not arrive on the PPI
receiver within the specified time. If a WAIT value of 0 is specified and no
data is queued to the specified receiver, then DSIPHONE ends with PPI
RECEIVE failed (rc=13).

APPEND
Specifies that DSIPHONE is to append to an existing stem. The default is that

36 Application Programmer’s Guide

DSIPHONE creates a new stem or replace an existing one. If APPEND is
specified for a stem that does not exist or has no elements, APPEND is
effectively ignored.

safuid
The name of a REXX variable into which the SAF userid associated with the
data being received is to be stored. The SAF userid is that of the original
sender of the data.

from_only
A value specified here restricts the RECEIVE to data sent by programs with
this sender name.

DSIPHONE Usage Notes
When a REXX program running in TSO calls DSIPHONE to register a PPI receiver,
that receiver remains active only until the program completes. This occurs because
TSO drives an end-of-memory routine when the program completes. When the PPI
detects this, it marks the receiver inactive.

MLWTO Attributes Support
When sending a stem, default MLWTO attributes are applied to each element of
the stem. By building a dollar stem, users of DSIPHONE can control MLWTO
attribute specification.

When receiving data from the PPI, a dollar variable or stem automatically is
defined by DSIPHONE to contain the MLWTO attributes currently applying to that
data. MLWTO attributes control the line type (control, label, data, or end), color,
intensity, and highlighting applied to each line of a message.

A dollar variable or stem corresponds to the name of the variable or stem
containing the actual data, preceded with the dollar sign ($). A dollar variable or
stem is a string of data containing blank-delimited, two-byte specifications, such as
CR (Color Red), HR (Highlight Reverse), and TD (line Type Data). Specifications
that are not valid are ignored, and the last multiply-defined attribute is used. For
example, if an attribute string contained ’TD CB CR’, the CR color attribute is
assumed.

In the following example, the text in myvar displays as a red, reversed line when
sent across the PPI and received by the NetView program:
$myvar = 'TD CR HR'
myvar = 'A line of text'

For more information about MLWTO attributes, refer to IBM Tivoli NetView for
z/OS Programming: Pipes and IBM Tivoli NetView for z/OS Programming: Assembler.

DSIPHONE Results
Because DSIPHONE is a REXX external routine, the result of a REXX call to
DSIPHONE is contained in the REXX-defined variable, result. If the DSIPHONE
external function has a non-zero completion code, the REXX language processor
indicates an 'incorrect call to routine' return string.

DSIPHONE generates a return string in the REXX variable result, which can be
parsed in the following way:
parse var result phoneCode diagnostic ', rc = ' reasonCode

Chapter 3. Using REXX to Send Requests 37

In this case, the REXX variable phoneCode is a 4-byte positive integer that is
left-padded with blanks. If applicable, the REXX variable reasonCode is the return
code from an unsuccessful internal program call by DSIPHONE. The REXX
variable diagnostic describes the error or the unsuccessful function call or both.

A REXX coding example for handling the DSIPHONE result string follows.
call 'DSIPHONE'
parse var result phoneCode diagMsg ', rc = ' reasonCode
if phoneCode <> 0 then
do
msg = 'DSIPHONE returned' phoneCode'.'
if reasonCode ¬= " then
msg = msg'; PPI return code =' reasonCode
say msg
say diagMsg
end

The following table lists the return codes generated by DSIPHONE requests.

Table 3. DSIPHONE Return Codes

nnnn Text Associated with nnnn Description

0 (blank) The call to DSIPHONE completed
successfully.

1 DSIPHONE called without
arguments

DSIPHONE was called without specifying
any parameters.

3 Too many parameters for this
request type

More parameters were passed to
DSIPHONE than expected for the given
request type. For example, only one
parameter is expected on the VERSION
call.

4 Too few parameters for this request
type

Fewer parameters were passed to
DSIPHONE than expected for the given
request type. For example, at least two
parameters are expected on the SEND call.

5 The request type is not valid. The first parameter passed to the NetView
program was not one of the valid request
types (VERSION, SEND, RECEIVE,
OPENRECV, AUTHRECV, CLOSE).

6 REXX stem or variable name too
long

The name specified for the variable or stem
name exceeds 250 bytes.

7 REXX variable operation failed, rc = The REXX command processor reported an
error attempting to handle a value for a
variable specified in the call to DSIPHONE.
For information about the return code
value, see the TSO/E REXX library (section
on IRXEXCOM). The value operation
indicates the attempted REXX function.

8 PPI receiver name is too long The name specified for the PPI receiver
name is longer than eight characters.

38 Application Programmer’s Guide

Table 3. DSIPHONE Return Codes (continued)

nnnn Text Associated with nnnn Description

9 PPI request failed, rc = An unexpected error occurred attempting a
PPI request. The value after rc= is the return
code from the PPI pertaining to the given
request. Check the description of this
return code in the description of the related
PPI request in Chapter 2, “Using High-Level
Languages and Assembler to Send
Requests,” on page 11.

10 Invalid MLWTO attributes The user has coded MLWTO attributes that
are not valid (the dollar variable).

11 REXX variable fetch failed, rc = The REXX command processor reported an
error attempting to retrieve the value of a
variable specified in the call to DSIPHONE.
The value after rc= is documented in the
IRXEXCOM section in the TSO/E
REXX/MVS Reference.

12 PPI SEND failed, rc = An unexpected error occurred attempting
to send data to a PPI receiver. The value
after rc= is the return code from the PPI.
Check the description of this return code in
the description of request type 14 in
Chapter 2, “Using High-Level Languages
and Assembler to Send Requests,” on page
11.

13 PPI RECEIVE failed, rc = An unexpected error occurred attempting
to retrieve data from a PPI receiver. The
value after rc= is the return code from the
PPI. Check the description of this return
code in the description of request type 22
in Chapter 2, “Using High-Level Languages
and Assembler to Send Requests,” on page
11.

14 PPI CLOSE failed, rc = An unexpected error occurred attempting
to delete a PPI receiver name. The value
after rc= is the return code from the PPI
itself. Check the description of this return
code in the description of request type 10
in Chapter 2, “Using High-Level Languages
and Assembler to Send Requests,” on page
11.

15 Stem .0 element missing The name of a stem was passed as a
variable on a SEND request but the stem .0
value (stem size) was not found.

16 Stem .0 element is not valid. The name of a REXX stem was passed as a
parameter, but the stem’s .0 value (stem
size) is not a positive integer.

18 Too many elements in stem The number indicated in the stem’s .0
value was greater than 2³²–1 (2147483647).

19 First line of MLWTO not control
line

MLWTO attributes for a stem were
specified, but the first element of the stem
was not identified as control line, ’TC’.

Chapter 3. Using REXX to Send Requests 39

Table 3. DSIPHONE Return Codes (continued)

nnnn Text Associated with nnnn Description

21 The WAIT interval specified is not
valid.

An value that is not valid was specified for
wait on the RECEIVE call. The value must
be a positive integer value less than
(2³²–1)/100 (21474836).

23 Argument 6 is not "APPEND" or
blank

The sixth parameter on a RECEIVE call, if
specified, is not "APPEND".

25 PPI RECEIVE timed out The interval specified in the wait parameter
has passed, but no data has been received
on the PPI receiver specified.

27 The MLWTO line type attribute is
not valid.

The MLWTO line type attribute is not
control (TC), label (TL), data (TD), or end
(TE).

29 The MLWTO attributes length,
attribute_length is not valid.

The length of the MLWTO attribute string
exceeds 255 bytes.

30 Unable to obtain storage, rc= DSIPHONE was unable to obtain enough
additional memory to store or send a very
large REXX value. The value after rc= is the
return code from the z/OS STORAGE
macro.

31 The attempt to call DSIPHONE
from NetView is not valid.

Calling DSIPHONE from the NetView
program is not allowed.

9999 Internal error, condition_code Contact IBM Software Support.

40 Application Programmer’s Guide

Chapter 4. Using the NetView LU 6.2 Transport APIs

This chapter describes the NetView management services (MS) transport
application program interface (API). It also describes the use of the NetView high
performance transport API and the differences between it and the NetView MS
transport API.

NetView MS Transport API
The NetView MS transport API handles the protocols required by LU 6.2
conversations. The API provides data to the NetView program to send, defines the
destination for the data, and provides a command processor that the NetView
program calls when data is received for the API.

NetView contains an LU 6.2 API provided by the NetView MS transport that is
used to implement a multiple-domain support (MDS) defined by Systems Network
Architecture (SNA).

MDS Function
MDS sends and receives management services data, such as alerts or data
pertaining to remote operator control, from other devices, including System/390®

(S/390®) and non-S/390 hosts. MDS supports high data integrity across the
transport and provides guaranteed error notifications for each message.

MS Transport Restrictions
To avoid performance problems, do not use the NetView MS transport for the
following functions:
v Forwarding NetView system management facilities (SMF) records between

communication management configurations
v Sending the entire contents of databases between two different S/390 systems
v Running performance-critical applications (unless the architecture requires the

use of MDS for the application)

NetView High Performance Transport API
The NetView high performance transport API is a generic LU 6.2 API. It functions
much like the NetView MS transport API, but uses different LU 6.2 protocols that
enhance performance. Most of the external functions for the high performance
transport API are the same as for the NetView MS transport API.

For example, the application receives data in the same manner for both APIs. The
multiple-domain support message unit (MDS-MU) is put on the command
processor initial data queue. The application can use CNMGETD (CNMGETDATA)
or DSIGETDS to get the MDS-MU. Also, MDS-MU general data stream (GDS)
variables are the enveloping format used for both APIs.

Differences between Transports
The NetView high performance transport API and the NetView MS transport API
differ in the following ways:

© Copyright IBM Corp. 1997, 2009 41

v The high performance transport API does not perform confirmations on every
multiple-domain support message unit (MDS-MU) that is sent. The NetView MS
transport API does.

v The high performance transport API enables the LU 6.2 conversations that it
uses to remain persistent, or active, even when no data is available to send. This
eliminates stopping a conversation during idle periods and then starting it again
when data needs to be sent. Starting and stopping the conversation can affect
performance if the idle time is short.
The high performance transport API defaults to persistent conversations.
However, you can specify that the conversations are to be nonpersistent, or
nonpersistent on an LU name basis, by using definition statements.
Conversations on the MS transport API are always nonpersistent.

v The high performance transport API enables applications to specify the logmode
to use when sessions are established for the applications to use to send data.
Applications can use different logmodes with different session characteristics, as
appropriate. When an application registers, it specifies which logmode to use.

v The high performance transport API is not used by the NetView program’s focal
point support. This means that high performance applications cannot be focal
point applications or receive notification about changes in focal points.

v With the high performance transport API, the LU 6.2 verb flow for the send
process is different.
The high performance confirmation request (CONFIRM) is sent only for the first
piece of data sent after an ALLOCATE. All subsequent sends on the
conversation are sent unconfirmed. SEND DATA is issued until the sending
transaction processor has no more data to send, at which time it issues a FLUSH
request. The conversation is not usually deallocated.

v The high performance transaction program name carried in the function
management header-5 (FMH-5) is different. For a high performance transport
API transaction, the program name is X'23F0F0F2'.

High Performance Transport Restrictions
The following restrictions are for the high performance transport API:
v The high performance transport API applications cannot use the logmode

SNASVCMG that is supplied by IBM.
v Applications that require a management services capabilities exchange (for

example, focal point applications) cannot use the high performance transport
API.

Deciding Which Transport API to Use
When building an application on top of NetView, decide which NetView LU 6.2
API your application is to use. This topic provides guidelines on how to choose
between the NetView MS transport API and the NetView high performance
transport API.

When to Use the NetView MS Transport API
Use the NetView MS transport API in the following situations:
v Your application performs remote operations. Determine whether your

application is using the functions and GDS variables (for example, ACTIVATE,
DEACTIVATE, or CANCEL) described in the operations architecture. For
additional information, refer to Systems Network Architecture Formats.

42 Application Programmer’s Guide

|

v Your application performs an architected function that collects data from other
devices that support only the base function multiple-domain support (MDS), as
described in Systems Network Architecture Formats.

v Your application is written for a non-NetView node that performs remote
operations functions or forwards alerts to the NetView program. Use the MS
transport because you are implementing network management architecture
categories on the non-NetView node that communicates using MDS.

When to Use the NetView High Performance Transport API
Use the high performance transport API to write programs that communicate
outside of the local host frequently without having those applications affect the LU
6.2 sessions used by the MDS support function. It is not meant to be used for bulk
data transfer; the NetView file transfer program (FTP) is an example of a bulk data
transfer product.

Use the NetView high performance transport API in the following situations:
v Your application is only transferring data between two NetView systems (for

example, forwarding NetView SMF records) and does not need to be expanded
to cover other devices.

v Your application performs a function not covered by SNA.
v You require a high transfer rate between your application and the partner

application on the other device. Use the high performance transport even if you
are transferring architected data as long as the architecture does not specify to
use MDS to perform the data transfer.

v Your application works in an environment in which confirmations are not
performed on every data flow. For more information, see “NetView System
Programmer” on page 71.

Considerations for Applications
If you are a system programmer writing applications that use the LU 6.2 protocols,
consider the following items in your design:
v Send-Receive interface
v Tasking structure
v MDS transactions

Send-Receive Interface
NetView programs that send and receive MS data can be written in assembler, C,
or PL/I. You can also split the send and receive functions and use different
interfaces for each.

NetView send interfaces choices:
v You can provide the NetView program a prebuilt MDS-MU or have the NetView

program build the MDS-MU. This is determined by the input parameters that
you specify.
Using a prebuilt MDS-MU simplifies the application, but can require more setup
work to use the interface.

v You can choose to wait for responses to requests and decide to buffer the
responses or forward them immediately.

Chapter 4. Using the NetView LU 6.2 Transport APIs 43

For programs using PL/I and C, you can choose whether NetView suspends the
program while waiting for a response to a data request. If the program is to
remain active, you can specify that replies to a data request are buffered or are
immediately forwarded to the program.
For programs using assembler, you can specify whether replies to a data request
are buffered or are immediately forwarded to the program. See “Receiving
Synchronous and Asynchronous Replies” on page 45 for more information.

Tasking Structure
As part of designing the application, consider the tasking structure of the
application. The task under which the registration macro or command is issued
becomes the task to which unsolicited data intended for the application is sent.

A program running under other NetView tasks, however, can pass the application
name to NetView as the origin application when issuing send requests. In such
cases, replies and error messages pertaining to the send request are sent to the task
issuing the send request. If send requests are being issued from tasks other than
the registering task, ensure that the task is authorized to run the command
specified on the registration.

MDS Transactions
MDS architecture supports data requests that require a response. For example, an
MDS transaction can consist of an operator’s request to a remote host and the
expected response from the remote host.

MDS architecture also supports stand-alone requests. These requests are commands
or data transmissions that do not require the receiver to respond to the sender.

Logical requests and responses to MDS transactions are implemented entirely at
the application level, not at a networking level. Networking software, such as
VTAM, generates SNA requests and responses as part of delivering a transaction,
but these are not apparent to the application receiving the request, and are not
related to the MDS transaction. The response to the transaction comes from the
application that receives it.

MDS architecture provides an agent unit-of-work correlator, which provides the
ability to correlate requests and responses. MDS architecture also provides error
notification to applications if the connection between the applications is lost while
a transaction is open.

Requests and Replies
MDS architecture defines the multiple domain support-message unit (MDS-MU) as
the data envelopes for requests and replies. MDS-MUs include the
agent-unit-of-work correlator, and flag bits that define the purpose of the data in
relation to a transaction.

The following requests and replies are possible.
v Request expecting reply

This request initiates a transaction. The application sends data and expects to
receive an MDS-MU containing data related to the request. The transaction is
uniquely identified by the agent unit of work correlator in the MDS-MU.

v Request not expecting reply

44 Application Programmer’s Guide

This request defines a stand-alone request. The application is not expecting a
response, although NetView can send an error message to the application using
the agent unit of work correlator from the request, if the request itself cannot be
successfully sent to its destination.

v Reply not last
This is part of a multipart reply. The application expects additional replies
pertaining to the same request. Each reply contains the same agent unit of work
correlator in the MDS-MU.

v Reply last
This reply completes a transaction. It is the only reply to a request, or is the last
part of a multipart reply to a request. When the reply is successfully sent to the
application, the NetView program cleans up its internal resources that were
being used to track the transaction.

v MDS error message
This is an error indicator, containing an SNA condition report (SNACR), sent to
an application. The error indicator describes an error that occurred while the
NetView program was sending an MDS-MU. If the agent unit of work correlator
contained in the error message matches the correlator of an outstanding
transaction, NetView cancels the transaction. The application involved must
retry the request or response. If a transaction is canceled this way, both
applications involved in the transaction receive an error message.
An error message is also generated if the timer interval specified (or defaulted)
on the send request is exceeded before the last reply is received.

Receiving Synchronous and Asynchronous Replies
Applications using the send interface can receive replies to requests either
synchronously or asynchronously. Applications written in assembler can receive
only asynchronous replies. Applications written in PL/I and C can receive
synchronous or asynchronous replies. NetView users can use the CNMGETD
(CNMGETDATA) or DSIGETDS services to obtain replies to requests. Replies can
be synchronous or asynchronous:

Synchronous
When replies are received synchronously, the application is suspended
after the send request is issued. Control is returned to the application at
the next sequential instruction after the last reply to the request is received,
or after an error message canceling the request is received.

An error message is generated if the timer interval specified (or set by
default) on the send request is exceeded before the last reply is received.

Asynchronous
Asynchronous replies are received after the application issuing the send
request returns control to NetView. The application is not suspended, and
NetView uses a specified command to process the received data.

The application can specify that the NetView program is to forward each
reply to the application as the reply is received or that the NetView
program is to buffer the replies. If the replies are buffered, the NetView
program waits until the last reply is received or the request is canceled
before issuing the specified application command.

Chaining Replies
Applications can send multipart, chained replies to a request. When sending
chained replies, the application must specify the same MDS-MU agent unit of

Chapter 4. Using the NetView LU 6.2 Transport APIs 45

work correlator for each chained reply. The last reply must be identified as last,
either by using the appropriate parameter on the send service or by setting the flag
bits in a user-built MDS-MU.

An alternative to sending separate replies is to block multiple replies together as
one data transmission and use only one NetView send request. The NetView
program supports data transmissions of up to 31K. In the case of blocked replies,
the receiving application must unblock the replies before processing them.

Saving and Using MDS-MU Correlators
Replies to transactions must use the same agent unit of work correlator contained
in the original request. This requires applications to save the correlator until the
transaction is complete. Correlators can be built and returned to the application
when a request is made, or the application can supply its own correlator.

For replies or error messages pertaining to a transaction, the send interface
provides a parameter for passing the correlator for the NetView program to use, or
the application can provide it when passing a completely built MDS-MU. If the
application provides its own correlator, the correlator must be unique.

Specifying Timer Intervals
MDS transactions involving the NetView program have a limited amount of time
to complete before the NetView program cancels the transaction. This time interval
can be specified on the send interface and is affected by time intervals
(MAXREPLY and RCVREPLY) established with the NetView DEFAULTS command.
Refer to NetView online help for more information about the DEFAULTS
command. To specify a time interval, choose one of the following time intervals:

MAXREPLY
The first time interval to consider is the maximum amount of time a
transaction can remain open. The NetView program default is one day, but
it can be set up to one year.

An application can specify up to the DEFAULTS MAXREPLY value on the
send interface. The DEFAULTS MAXREPLY value is also used by a
NetView application receiving a request.

The amount of time a transaction stays open between two NetView
applications is the shorter of the MAXREPLY value on the receive side or
the value specified (or set by default) on the sending side.

RCVREPLY
The second time interval to consider is the RCVREPLY value set by the
DEFAULTS command.

If no time interval is specified on the send interface, the NetView default
of two minutes is used. However, the value can be as high as the value of
MAXREPLY.

In determining the timer values for your installation, keep in mind that
they apply to all applications using the LU 6.2 protocols. Set the time
interval to an appropriate value for all of your applications.

Handling MDS Error Messages
MDS error messages are used to cancel transactions and to tell applications that
replies or requests not expecting replies cannot be routed successfully. The
NetView program builds error messages and sends them to applications. In such
cases, the origin application name is a hexadecimal string of X'23F0F1F0'.

46 Application Programmer’s Guide

When an MDS error message is sent, an SNA condition report GDS variable is
included. This variable has a sense field that describes the error. If an application is
sending an error message to cancel the transaction, it can supply its own sense
data in the GDS variable.

Error messages can be sent from either the origin or destination of a transaction to
cancel the transaction. In addition to an error message, the origin of a transaction
can also send a reply last message to cancel a transaction. Your application needs
to be able to receive a reply last message even if it is the target of a request.

Chapter 4. Using the NetView LU 6.2 Transport APIs 47

48 Application Programmer’s Guide

Chapter 5. Management Services Applications

The NetView MS transport makes it possible for management services applications
that are supplied with the NetView product or written by users to communicate
with management services applications in other logical units (LUs) over LU 6.2
sessions. The transport acts as an interface between the application and VTAM,
establishing LU 6.2 conversations and keeping track of outstanding requests and
timeouts.

The NetView MS transport has the following three interfaces:
v Registration services
v Send macro
v Receive macro

For additional information about the PL/I, C, and assembler interfaces refer to:
v IBM Tivoli NetView for z/OS Programming: PL/I and C

v IBM Tivoli NetView for z/OS Programming: Assembler

Registration Services
An application uses the CNMRGS (CNMREGIST) service routine in PL/I and C, or
the DSI6REGS macro in assembler, to inform the MS transport that it is ready to
send and receive data.

The application can specify:
v Its application name (required).
v A command to run when unsolicited data is received for that application

(required).
v A focal point category about which it wants to receive focal point information.
v Whether the application is a focal point application.
v Whether the application is to receive special notification of session outages at

other management services nodes.
v Whether the application is suspended after it issues a send request

(CNMREGIST service routine only).
v Whether replies to a send request are buffered or immediately forwarded to the

application (for the CNMREGIST service routine, only if the application is not
suspended).

Session Outage Notification
When registering, an application can choose the type of session outage notification:

ALL
Session outage notifications are received even if the NetView program cannot
determine that the outage is caused by a problem.

ERROR
Notification is received only when the NetView program can determine that
the session outage is abnormal and it cannot establish a conversation with the
affected node.

© Copyright IBM Corp. 1997, 2009 49

|
|

NONE
No session outage notifications are received (the default).

Session outage information is provided only when the last LU 6.2 session to a node
with which the MS transport has been in contact is lost. Non-LU 6.2 session
outages do not drive the notification.

REGISTER Command
Use the REGISTER command to access the functions provided by the CNMRGS
(CNMREGIST) service routine in PL/I and C, or the DSI6REGS macro in
assembler. Refer to NetView online help for more information about the REGISTER
command.

Send Macro
An application uses the CNMSMU (CNMSENDMU) service routine in PL/I and C,
or the DSI6SNDS macro in assembler, to send data to another registered
application in its own node or another node.

When using the CNMSMU (CNMSENDMU) service routine, an application can
specify whether it is suspended after it issues a send request, or, if it remains
active, whether replies to the send request are buffered or immediately forwarded
to the application. When using the DSI6SNDS macro, an application can specify
whether replies to a send request are buffered or immediately forwarded to the
application.

Destination Name
Your application can specify either a NetView LU name or a VTAM CP name as
the destination name of an MDS send request.

Use the VTAM CP name instead of the NetView LU name when issuing an MDS
send request to a NetView program running under VTAM. This procedure affects
the following NetView services:
v DSI6SNDS macro
v CNMSMU (CNMSENDMU) HLL interface
v FOCALPT command
v DEFFOCPT statement

Note: Current applications that use the NetView LU names do not need to be
changed.

When several NetView programs run under VTAM, only one of them can receive
multiple domain support message units (MDS-MUs) addressed to the VTAM CP
name. Specify which NetView program can receive MDS-MUs addressed to the
VTAM CP name specified with the VTAMCP.USE statement in the CNMSTYLE
member. See the IBM Tivoli NetView for z/OS Administration Reference for
information about the VTAMCP statement.

The receiving NetView program must have VTAMCP.USE=YES specified in the
CNMSTYLE member (if Version 5 or later), or it must have VTAMCP USE=YES
specified in the DSIDMNK member (for releases prior to Version 5).

When replying to an MDS send request using NetView services, you must ensure
that the reply destination matches the origin of the request. A request originating

50 Application Programmer’s Guide

|
|

|
|

from another NetView with the VTAM CP name as its origin must be replied to
using the origin CP name (in place of the NetView LU name) as the destination.

Note: For send requests within the same NetView program, the send service enters
the NetView LU name as the origin LU.

Restrictions
The send macro has several restrictions:
v VTAM must be active for data to be sent, even to an application within the same

node.
v When data is sent within the same node, the origin and destination application

names must be different.
v If one of the applications is an operations management served application, the

other application communicating with it must use the routing and targeting
instruction general data stream (R&TI GDS) variable in the data that it sends to
the operations management application. For an application-reported problem,
use an MS request or reply containing a routing report, as defined in MS
architecture, to report the problem.

v If you have interconnected networks, destination LU names must be unique to
ensure reliable routing. If a blank NETID is supplied (or set by default), the
NetView program fills in the correct NETID prior to sending data through the
network.

Receive Macro
A receive service, CNMGETD (CNMGETDATA) in PL/I and C and DSIGETDS in
assembler, allows an application to receive data from another application,
including a focal point notification from operations management.

Implementing the Application
To implement a management services application in the NetView program, the
NetView operator, NetView system programmer, and non-NetView system
programmer need to follow the instructions described in this section. You can
implement the application in NetView or non-NetView LUs.

NetView Operator
The NetView MS transport support is transparent to the NetView operator.
However, the system programmer can instruct the operator to issue the registration
command (REGISTER) to define the NetView program status as a focal point or
entry point for a certain category of management services. An operator can also
use the REGISTER command with the QUERY option to display a list of registered
applications. Refer to NetView online help for more information about the
REGISTER command.

The NetView operator sees messages related to the transport functions. Several
other messages are logged only to the network log to assist in problem
determination. Most of the messages have prefixes of DWO45 and DWO46. LU 6.2
problems might generate VTAM error messages or DSI769I messages. Refer to
NetView online help for a complete description of these messages.

Syntax errors in data received from other nodes cause an alert to be passed to the
hardware monitor.

Chapter 5. Management Services Applications 51

NetView System Programmer
To implement a management services application in the NetView program, the
system programmer performs the following tasks:
1. Identify a management services category to process.

Management services categories (Tivoli-defined or user-defined) are collections
of processes used to monitor and manage networks. Tivoli defines the
following major management services categories:
v Problem management
v Performance and accounting management
v Configuration management
v Change management
Within each major category, Tivoli has defined functional subsets of the
category. ALERT_NETOP, for example, is one of the subsets of the problem
management category that deals with alert data. The functional subsets are
defined in Systems Network Architecture Formats.
The functional subsets are implemented by the system programmer as
management services application programs that send and receive data. These
applications can participate in focal point-entry point relationships. For details
on focal points and entry points, refer to IBM Tivoli NetView for
z/OS Automation Guide.

2. Create a management services application.
Write command processors to send and receive data for that management
services category. You can use one command processor to handle both sending
and receiving. You can access the interfaces to send data from high-level
language (HLL) or assembler command processors, or access the interfaces to
receive data from HLL, assembler, or REXX command lists.

3. Register the management services application.
You can use the macro interface in a command processor or the command
interface.

4. Determine whether your application uses the NetView destination LU name or
the VTAM CP name as the destination name in MDS send requests.

5. Use the CNMSMU (CNMSENDMU) service routine in PL/I and C or the
DSI6SNDS macro in assembler to:
a. Send requests to other management services applications in the same node

or a different node.
b. Send replies to requests received from other management services

applications.
6. Deregister the management services application. You can use the macro

interface in a command processor or the command interface. Do this when you
no longer want to send or receive data for that management services category.
When an application is deregistered, any outstanding send requests expecting a
reply are canceled, and MDS error messages are sent to the other applications
involved in the transaction. This is true even for send requests originating
under a task other than the registered task. Deregistration prevents applications
from sending data using the deregistered application name as the origin
application.

Non-NetView System Programmer
Applications running in LUs without the NetView program can communicate with
the MS transport. For this communication, the non-NetView LU must implement

52 Application Programmer’s Guide

MDS-SEND and MDS-RECEIVE transaction programs similar to those of the
NetView MS transport. For more information about communicating from
non-NetView applications, refer to Systems Network Architecture Formats.

The criteria for non-NetView program communication using the NetView MS
transport includes:
v Applicable portions of the LU 6.2 architecture
v The send process
v The timeout message

Applicable LU 6.2 Architecture
This section describes the portions of the LU 6.2 architecture that provide
application choices; it does not describe the entire LU 6.2 architecture. It also
describes function management header-5 (FMH-5) restrictions on programs
communicating with the NetView program.

Refer to Systems Network Architecture Formats for details of the MDS-MU encoding
and the MDS transport architecture for the MDS-SEND and MDS-RECEIVE
transaction programs.

BIND Setting: NetView uses VTAM LU 6.2 support. The following information
describes how VTAM handles the bytes in the BIND. The information uses
zero-origin indexing. The first byte of the BIND is zero (0), the second is 1, and so
on.

On initial contact with a previously unknown LU, VTAM assumes that the LU
supports parallel sessions (byte 24 of the VTAM BIND settings set to X'23') and
attempts to establish a SNASVCMG session to negotiate session limits.

You can change the byte-24 setting to X'2C' if your LU supports only single
sessions and you want to negotiate the BIND.

You can reject the BIND with a sense code of X'0835xxxx', where xxxx is one of the
following values:
v The value of X'0018', the offset of the byte for parallel session support (byte-24 in

Table 4)
v The offset of the first character of the SNASVCMG name in the mode name

structure subfield

Table 4. VTAM BIND Settings

Bytes Description

0–6 Always set to X'31001307B0B050'. The second byte implies that the BIND can be
negotiated. The LU is not obligated to do anything other than send a positive or
negative response, but can perform other functions.

7 Specifies contention results.
X'B3' The BIND sender is the contention winner for the session.
X'A3' The BIND sender is the contention loser for the session.

This byte also indicates that VTAM includes control vectors in the BIND,
making it an extended BIND.

8, 9 Controls secondary logical unit (SLU) pacing. VTAM indicates one-stage pacing,
and the exact pacing window values can vary. VTAM supports adaptive
session-level pacing.

Chapter 5. Management Services Applications 53

Table 4. VTAM BIND Settings (continued)

Bytes Description

10 Controls the SLU’s maximum send RU size. VTAM accepts values from X'80' to
X'FF'. The default is X'85' (256 bytes). See Systems Network Architecture Formats
for the hexadecimal format of this byte.

11 Controls the primary logical unit’s (PLU’s) maximum send RU size. VTAM
supports X'80' to X'FF' with a default of X'85'.

12, 13 Controls PLU pacing. VTAM supports adaptive session pacing. VTAM’s default
pacing window sizes are X'3F'.

14–22 Always set to X'060200000000000000'.

23 Indicates security support. NetView does not use security features available in
LU 6.2 architecture. Therefore, this byte defaults to X'00'.

24 Contains LU 6.2 flags. VTAM sets the byte to X'23' for parallel session capable
partners or X'2C' for single-session capable partners.

25, 26 Always set to zero. This indicates that limited-resource sessions and
cryptography are not supported.

VTAM includes the following structured subfields in the BIND:
v Mode name
v Session-instance identification (ID)
v Network-qualified PLU name

No user-request correlator is present. The fully-qualified program control interrupt
(PCI) control vectors, class-of-service control vectors, and transmission priority
control vectors are included.

FMH-5 Restrictions: NetView does not use the full range of LU 6.2 options on its
conversations. The following list shows restrictions on the function management
header-5 (FMH-5) that can be sent to start a conversation:
v The transaction program (TP) name you specify in the FMH-5 must be

X'23F0F0F1', which is the architected name for MDS-RECEIVE.
v NetView supports only basic conversations.
v The synchronization level must be CONFIRM.
v Security subfields are not used and are not accepted.
v The NetView program does not use the logical agent unit of work correlator

(UOWC) that can be included in the FMH-5.
v Program initialization parameter (PIP) data is not supported.

The NetView LU 6.2 support uses the SNASVCMG mode to implement simple
send and receive transaction programs that use only a small subset of permissible
LU 6.2 verbs. Your LU should not attempt to maintain a conversation to send data
indefinitely. SNASVCMG might be needed for internal LU processing. The partner
LU must periodically deallocate the conversation. To prevent problems, follow the
management services architecture closely.

Data flow on a conversation is always one-way. If an error is detected on a
conversation, the correct way to report it is to deallocate the conversation
abnormally (DEALLOC TYPE=ABNDPROG verb). Partner LUs should not attempt
to reverse the data flow direction. Specifically, your LU should not issue the
following requests:

54 Application Programmer’s Guide

v SEND-ERROR or REQUEST-TO-SEND from a receiving application
v RECEIVE or PREPARE-TO-RECEIVE from a sending application

If SEND-ERROR, RECEIVE, or PREPARE-TO-RECEIVE are detected, the NetView
program abends the conversation and ignores REQUEST-TO-SEND.

In addition, partner LUs should not attempt to include error log data on an
abnormal conversation deallocation, because the NetView program does not
support the function. The NetView program receives error log data, then discards
it.

The NetView program includes confirmation requests on the data it sends and
expects confirmation requests sent with the data it receives.

Send Process
The NetView program uses the following process to send the data that has been
passed to it:
1. The NetView program determines whether session limits have been established

with your LU. If not, the NetView program issues a change number of sessions
(CNOS) verb request.

Note: If your LU has established a session with the NetView program using an
INIT-SELF or has set session limits as part of its initialization, the
NetView program does not issue the CNOS request.

2. When session limits are set, NetView issues an ALLOCATE request.
3. The NetView program issues SEND-DATA and CONFIRM messages until

nothing is left to send. In some error recovery cases, the NetView program can
issue a CONFIRM message with no data preceding it.

4. When no data remains to be sent, the NetView program issues a
DEALLOCATE request.

Time Out Message
The NetView program enables command processors using the transport service to
specify a time interval within which a response must be received for requests. If
this timer expires, the NetView program cancels the request and sends a message
to your LU indicating that a reply is no longer required. This message is in the
form of a sense code (X'08A90003').

Chapter 5. Management Services Applications 55

56 Application Programmer’s Guide

Chapter 6. Operations Management Served Applications

Operations management is an MS application that enables operations management
served applications that are supplied by the NetView product or written by users
to send architected operations management commands to remote systems for
processing. The extended routing capabilities available using routing and targeting
instruction (R&TI) GDS variables within a CP-MSU make it possible to:
v Route the command to the appropriate command processor in the target system

for processing.
v Route the acceptance report, completion reports, and other delayed replies back

to the same instance of the issuing served application.
v Correlate the reports and delayed replies with the original command.
v Inform a served application in an entry point node of the identity of the focal

point for unsolicited operations management data.

With these capabilities, two operators or autotasks can use the same served
application program to control two different remote systems. Each can receive the
replies and reports for the system it is controlling.

The following interfaces enable a served application to achieve operations
management communication:
v Registration service
v Send macro
v Receive macro

Refer to the following documents for more information about the PL/I, C, and
assembler interfaces:
v IBM Tivoli NetView for z/OS Programming: PL/I and C

v IBM Tivoli NetView for z/OS Programming: Assembler

Registration Service
A registration service macro CNMRGS (CNMREGIST) service routine in PL/I and
C or the DSI6REGS macro in assembler specifies the following information to
operations management:
v Service application name
v Command processor name
v Task name for receiving unsolicited data
v Whether to be informed of focal point information

Buffering Replies
When using the CNMRGS (CNMREGIST) service routine, an application can
specify whether it is suspended after it issues a send request, or, if it remains
active, whether replies to the send request are buffered or immediately forwarded
to the application. When using the DSI6REGS macro, an application can specify
whether replies to a send request are buffered or immediately forwarded to the
application.

© Copyright IBM Corp. 1997, 2009 57

|
|

Session Outage Notification
When registering an application, the type of session outage notification it receives
can be specified:

ALL
Session outage notifications are received even if the NetView program cannot
determine that the outage is caused by a problem.

ERROR
Notifications are received only when the NetView program can determine that
the session outage is abnormal.

NONE
No notifications are received (the default).

Session outage information is provided only when the last LU 6.2 session to a node
with which the MS transport layer has been in contact is lost. Non-LU 6.2 session
outages do not drive the notification.

REGISTER Command
Use the REGISTER command to access the functions provided by the CNMRGS
(CNMREGIST) service routine in PL/I and C, or the DSI6REGS macro in
assembler. Refer to NetView online help for more information about the REGISTER
command.

Send Macro
A send service macro (CNMSENDMU service routine in PL/I and C or the
DSI6SNDS macro in assembler) allows the served application to send data to
another registered application in the same node or a remote node.

When using the CNMSMU (CNMSENDMU) service routine, an application can
specify whether it is suspended after it issues a send request or, if it remains
active, whether replies to the send request are buffered or immediately forwarded
to the application. When using the DSI6SNDS macro, an application can specify
whether replies to a send request are buffered or immediately forwarded to the
application.

Destination Name
Your application can specify either a NetView LU name or a VTAM CP name as
the destination name of an MDS send request.

Use the VTAM CP name instead of the NetView LU name when issuing an MDS
send request to a NetView program running under VTAM. This procedure affects
the following NetView services:
v DSI6SNDS macro
v CNMSMU (CNMSENDMU) HLL interface
v FOCALPT command
v DEFFOCPT statement

Note: Current applications that use the NetView LU names do not need to be
changed.

When multiple NetView programs run under VTAM, only one of the NetView
programs can receive multiple domain support message units (MDS-MUs)

58 Application Programmer’s Guide

addressed to the VTAM CP name. Determine which one of several NetView
programs can receive MDS-MUs addressed to the VTAM CP name with the
VTAMCP.USE statement by using the CNMSTUSR or CxxSTGEN member. For
information about the VTAMCP statement, see IBM Tivoli NetView for
z/OS Administration Reference; for information about changing CNMSTYLE
statements, see IBM Tivoli NetView for z/OS Installation: Getting Started.

Both the sending and receiving NetView programs must have VTAMCP.USE=YES
specified in the CNMSTYLE member (if Version 5 or later), or it must have
VTAMCP USE=YES specified in DSIDMNK (for releases prior to Version 5).

When replying to an MDS send request using NetView services, ensure that the
reply destination matches the origin of the request. A request originating from
another NetView with the VTAM CP name as its origin must be replied to using
the origin CP name (in place of the NetView LU name) as the destination.

Note: For sends within the same NetView, the send service enters the NetView LU
name as the origin LU.

Restrictions
The send macro has several restrictions:
v VTAM must be active for data to be sent, even to an application within the same

node.
v Unless an application is operations management, when data is sent within the

same node, the origin and destination application names must be different. If the
origin application and destination application are operations management, and
the served application is sending from within the same node, the origin
application name in the R&TI must be different from the destination application
name.

v Served applications use the R&TI GDS variable in the data they send to other
served applications. A routing report contained in an MDS request or reply
should be used to report problems to partner applications. The origin application
in the MDS-MU must be operations management, and the origin application
name in the R&TI is the served application name. If an origin application
specifies a destination instance identifier when it sends a request with reply, the
identifier must be the same as the issuing task.

Receive Macro
A receive service routine, CNMGETD (CNMGETDATA) in PL/I and C and
DSIGETDS in assembler, enables the served application to receive data from
another application, including a focal point notification from operations
management.

Implementing the Application
To implement an operations management served application in the NetView
program, the NetView operator, NetView system programmer, and non-NetView
system programmer must follow the instructions described in this section. You can
implement the application in the NetView program or non-NetView LUs.

NetView Operator
The NetView MS transport support is transparent to the NetView operator.
However, the system programmer can instruct the operator to issue the registration

Chapter 6. Operations Management Served Applications 59

|
|

|
|

|

command (REGISTER). This might be necessary for the operator to send and
receive data from other management services applications using operations
management. The operator can also use the REGISTER QUERY command to
display a list of registered applications.

NetView System Programmer
To implement an operations management served application in the NetView
program, a system programmer performs the following tasks:
1. Creates an operations management served application. Writes command

processors to send and receive data. You can use one command processor to
handle both sending and receiving. You can access the interfaces to send data
from high-level language (HLL) or assembler command processors, or access
the interfaces to receive data from HLL, assembler, or REXX command lists.

2. Registers the operations management served application. Either the macro
interface in a command processor or the command interface can be used.

3. Determines whether the application uses the NetView destination LU name or
the VTAM CP name as the destination name in MDS send requests.

4. Uses the CNMSMU (CNMSENDMU) service routine in PL/I and C or the
DSI6SNDS macro in assembler interfaces to perform both of the following
actions:
a. Send requests to other management services applications or operations

management served applications in the same node or a different node.
b. Send replies to requests received from other management services

applications or operations management served applications.
5. Deregisters the operations management served application.

Either the macro interface in a command processor or the command interface
can be used. Do this when the task ends or when you no longer want to send
or receive data for that management services category.

Non-NetView System Programmer
Operations management does not have non-NetView system interfaces other than
those specified for the MS transport (see “Non-NetView System Programmer” on
page 52). However, the data must be in the form of an MDS-MU containing a
CP-MSU with an R&TI.

Operations Management Routing Considerations
Application designers should be aware of the following operations management
routing considerations:
v Operations management can have two defined application names:

– At initialization time, operations management registers itself as an entry
point, X'23F0F1F6'.

– If operations management is also a focal point, X'23F0F1F7' is also registered.
Unless you are sure that operations management is a focal point, use
X'23F0F1F6' when sending or building an MDS-MU. Your code can properly
process MDS-MUs with either name in them.
The operations management name is contained in the origin or destination
application field of the X'1311' GDS variable contained in the MDS-MU header.
See “MDS Routing Information (X'1311') GDS Variable” on page 86 for more
information about the MDS-MU header.

60 Application Programmer’s Guide

v Unsolicited data is routed by operations management to the task that is specified
in the destination instance identifier. If the destination instance identifier is not
present or is inactive, the request is sent to the task from which the registration
macro or command defining the served application was issued. If the
registration task is not active, a routing report is returned.

v For replies, the destination instance identifier is not used even if it is present.
Replies always go back to the task issuing the send request.

v For routing reports that are not replies, the report is sent to the task that issued
the send request that generated the routing report, unless operations
management has purged its internal representation of the original request
because of elapsed time. If this has happened, replies are sent to the destination
instance identifier if it is present. If this task is not present or is inactive, the
routing report goes to the registration task. If this procedure fails, an error
message is logged.

v For MDS error messages, operations management sends the error message to the
task that issued the request generating the error message, unless operations
management has purged its representation of the request because of elapsed
time. In this case, a message is logged and the MDS error message is discarded.

Chapter 6. Operations Management Served Applications 61

62 Application Programmer’s Guide

Chapter 7. Using NetView Web Services Gateway

NetView Web Services Gateway provides you with an industry-standard open
interface into the NetView program. The following functions are provided:
v Synchronous NetView commands and responses are text based. The command

input and the output is in XML format. A timeout value is used to wait for the
command response. If a command fails to return data in time, an error is
returned in the form of a SOAP fault.

v The transport mechanism is SOAP over HTTP/HTTPS. This provides a data
encryption facility using the SLL V3 protocol.

v User ID and password or password phrase authentication and command
authorization is done using existing NetView security functions.

v Certificate authentication is supported.
v A Web Services Definition Language (WSDL) file is provided for automatic

generation of a proxy-client or to use with a Dynamic Invocation Interface (DII)
client.

v NetView Web services are IPv6 enabled.

Introduction to the SOAP Client
SOAP is a communications XML-based protocol that lets applications exchange
information through the internet. SOAP is platform independent and language
independent. SOAP uses XML to specify a request and reply structure. It uses the
HTTP protocol as the transport mechanism to drive the request and to receive a
reply.

Using Web Services Gateway
The NetView program provides a SOAP transport that you can use to issue
commands and receive responses.

The SOAP request contains a NetView operator ID and its password or password
phrase. By using the HTTPS protocol, the transport is SSL-encrypted, which
protects the operator ID and password or password phrase.

The operator ID and password or password phrase are authenticated by the
NetView program or a SAF product such as RACF®. The command is run under
the authority of the specified operator ID.

Making a SOAP Request
You can make a SOAP request in the following ways:
v “Using a SOAP Envelope” on page 64
v “Using a WSDL-Generated Proxy Client” on page 64
v “Using a Java SAAJ Client” on page 65
v “Using a Dynamic Invocation Interface Client” on page 65

© Copyright IBM Corp. 1997, 2009 63

|

|

|
|

|
|
|
|

|
|

|
|

|

|
|
|

|

|
|

|
|
|
|
|

|
|

|
|

|
|
|

|
|
|

|
|

|

|

|

|

|

Using a SOAP Envelope
To use a SOAP envelope:
1. Format a SOAP envelope (see “Formatting a SOAP Envelope” on page 65).
2. Open an HTTP or HTTPS socket connection with the server and deliver the

payload.

The response is sent back in a SOAP envelope. If there are errors, a SOAP fault
element is sent back.

Using a WSDL-Generated Proxy Client
The NetView Web Services Description Language (WSDL) files automatically
generate a proxy-client connection. You can create the client for any language that
supports WSDL (for example, Java™, C/C++, COBOL, C#, JavaScript™, and Perl).
Java users can create client-side bindings using the Axis WSDL-to-Java tool. The
following example uses the basic invocation form:
% java org.apache.axis.wsdl.WSDL2Java (WSDL-file-URL)

You can use one of the following URLs depending on the output format (see
Table 5) that you use:
v http or https://yournvhost:port/znvwsdl.wsdl
v http or https://yournvhost:port/znvwsdl1.wsdl
v http or https://yournvhost:port/znvwsdl2.wsdl

The output generates bindings that are necessary for the client. You can also use
Rational Rose® Technical Developer V7.0 to generate the proxy-client connection.

Table 5 lists the supported output formats for the NetView WSDL files.

Table 5. XML Output Formats

URL Value
Output
Format WSDL File Description

/znvsoa <resp>
<dl>
...
line-mode-
output
...
</dl>
</resp>

znvwsdl.wsdl Use to capture the output of a command
that is entered from the command line.
The <dl> tag encloses a single line of
output.

/znvsoa1 <xmlout>
...
xml document
fragment
...
</xmlout>

znvwsdl1.wsdl Use to exchange XML or HTML
document fragments. Output escape
mode is disabled. When an XSLT
processor translates an XML or HTML
string, it escapes any significant
characters, for example, angle brackets (<
>), quotation mark ("), and ampersand
(&). Do not use this file if you expect
special characters in your output or if
you are using unescaped special
characters. Verify that the output
document fragment is well-formed.

64 Application Programmer’s Guide

|

|

|

|
|

|
|

|

|
|
|
|
|

|

|
|

|

|

|

|
|

|

||

|
|
|||

||
|
|
|
|
|
|
|

||
|
|
|

||
|
|
|
|
|

||
|
|
|
|
|
|
|
|
|
|
|

Table 5. XML Output Formats (continued)

URL Value
Output
Format WSDL File Description

/znvsoa2 <xmloutp>
<out>...

xml document
fragment
...

</out>
</xmloutp>

znvwsdl2.wsd Use to exchange XML or HTML
document fragments. Output escape
mode is enabled. The special
charactersangle brackets (< >), quotation
mark ("), and ampersand (&). are
escaped in the output using <, >,
&, and ". Standard Java
utilities are available to convert them
back to the XML specification.

Using a Java SAAJ Client
You can use Java SAAJ support to manually create SOAP envelopes to access the
server.

Using a Dynamic Invocation Interface Client
You can use a Dynamic Invocation Interface (DII) client to call the service. If you
use DII, you do not need access to tools such as the WSDL2Java tool or the WS
compiler.

Formatting a SOAP Envelope
The SOAP requests are embedded in a standard SOAP 1.2 envelope. The envelope
contains the following elements:

<SOAP-ENV:Header>
Contains NetView operator ID and password

<SOAP-ENV:Body>
Contains the SOAP method call

The SOAP envelope header contains the NetView operator ID and password as
shown in Table 6 on page 66.

Chapter 7. Using NetView Web Services Gateway 65

|

|
|
|||

||
|
|
|
|
|
|

||
|
|
|
|
|
|
|
|
|

|

|
|

|

|
|
|

|
|

|
|

|
|

|
|

|
|

Table 6. SOAP Envelope Header

Supported tags SOAP tag usage examples

<Name>
The NetView operator ID under which the request
is to be run. The operator ID is defined in the
DSIOPF member. The command is sent to this
task to be run under the authority of this operator.

<Password>
The NetView operator password or password
phrase that is defined in the DSIOPF member or
using a SAF product such as RACF. Either the
NetView program or RACF is used to authenticate
this password or password phrase.

The IBM-037 and UTF-8 code pages are used for
conversion between the host and distributed
environment. Verify that passwords or password
phrases are printable in both code pages. Enclose
the password or password phrase in a CDATA tag
if it has special characters. If you are using the
HTTPS protocol, the password or password
phrase is encrypted.

<Name>
NetView User ID

</Name>
<Password>

NetView Password
</Password>

The SOAP envelope body contains the SOAP request and its tags as shown in
Table 7.

Table 7. SOAP Envelope Body

SOAP request Supported tags NetView tag usage examples

NVCMD

Send a command
request to the
NetView
program

<cmd>

Any valid NetView command. This
includes regular command
processors, but does not include
full screen commands or DST
commands.

The command must be enclosed
with a CDATA tag if it contains
special characters, for example the
ampersand (&). The command is
converted to uppercase unless you
precede the command with the
netvasis command.

<NVCMD>
<cmd>
<![CDATA[NV_Cmd]]>
</cmd>

</NVCMD>

Figure 6 on page 67 shows a sample NVCMD SOAP request. This XML stub is
embedded in a standard SOAP 1.2 envelope. SOAP envelope elements are shown
in bold. Input and output data are shown in italics.

66 Application Programmer’s Guide

||

||

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|

||

|||

|

|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|

Figure 7 shows the response received. The response is sent in a SOAP element
enclosed by the <xmlout> tag.

Figure 8 on page 68 shows the fault element that is received.

<?xml version="1.0" encoding="EBCDIC-CP-US" ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-
envelope">
<SOAP-ENV:Header>

<h:BasicAuth xmlns:h="http://soap-authentication.org/basic/2001/10/"
SOAP-ENV:mustUnderstand="1">
<Name>

NetView_operator_ID
</Name>

<Password>
NetView_Password

</Password>
</h:BasicAuth>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<NVCMD>
<cmd>
<![CDATA[NetView_Command]]>

</cmd>
</NVCMD>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Figure 6. SOAP Request Sent to SOAP Endpoint

<?xml version='1.0' encoding="ISO-8859-1"?>
<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/" SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<xmlout>

CNM353I LISTVAR : OPSYSTEM = MVS/ESACNM353I LISTVAR : MVSLEVEL =
SP7.0.8CNM353I LISTVAR : ECVTPSEQ = 01010800CNM353I LISTVAR :

CURSYS = NMP119CNM353I LISTVAR : VTAMLVL = V618CNM353I LISTVAR :
VTCOMPID = 5695-11701-180CNM353I LISTVAR : NetView = Tivoli
NetView for z/OS V5R3CNM353I LISTVAR : NETID = USIBMNTCNM353I
LISTVAR : DOMAIN = NTV77CNM353I LISTVAR : APPLID =
NTV77010CNM353I LISTVAR : OPID = SYSADMINCNM353I LISTVAR : LU
= SYSADMINCNM353I LISTVAR : TASK = OSTCNM353I LISTVAR :
NCCFCNT = 0CNM353I LISTVAR : HCOPY = CNM353I LISTVAR : IPV6ENV
= MIXEDCNM353I LISTVAR : TOWERS = MVSCMDMGT NPDA NLDM
TCPIPCOLLECT TEMACNM353I LISTVAR : CURCONID = CNM353I LISTVAR :
AUTCONID =
</xmlout>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 7. SOAP Response from SOAP Endpoint

Chapter 7. Using NetView Web Services Gateway 67

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

The encoding used for the SOAP envelopes is ISO-8859-1.

Output Format
The NetView Web Services server supports different XML output formats
depending on the URL value supplied when connecting to the SOAP server.
Including HTML in XML documents might result in parsing problems because
HTML coding does not follow XML and XSL rules for well-formed documents. The
XML output method uses escape characters for the ampersand (&), quotation mark
("), greater-than symbol (>), and less-than symbol (<) when outputting text nodes.
For example, if output escaping is disabled, <abc>&</abc> remains intact. With
output escaping enabled, the output include single quotation marks:
'<abc>&</abc>’. This ensures that the output is well-formed XML. This is needed
when output is not well-formed XML, for example, when the output includes
ill-formed sections that are to be transformed into well-formed XML by a
subsequent non-XML process.

<?xml version='1.0' encoding="ISO-8859-1"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<SOAP-ENV:Fault>
<faultcode>
Server.Fault
</faultcode>
<faultstring>

String
</faultstring>

<detail>
<znvFault>

Error cnmcmd. Hlbrc=20
</znvFault>

</detail>
<faultactor>""<faultactor>

</SOAP-ENV:Fault>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 8. SOAP Fault Element

68 Application Programmer’s Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

Chapter 8. NetView High Performance Transport API

The NetView high performance transport API provides a better-performing
alternative to the NetView MS transport for user-written applications that need an
LU 6.2 API. The NetView high performance transport API makes it possible for
applications that are supplied with the NetView product or written by users to
communicate with applications in other LUs (NetView or non-NetView) over LU
6.2 sessions.

Communication between applications using this transport is in the form of
MDS-MUs. See Appendix A, “Data Formats for LU 6.2 Conversations,” on page 85
for information about the format of MDS-MUs.

NetView functions that are not performing architected management services
functions also use the NetView high performance transport API.

The NetView high performance transport API acts as an interface between the
application and VTAM. It establishes LU 6.2 conversations and monitors
outstanding requests and time-outs. The NetView high performance transport API
has the following three interfaces:
v Registration service
v Send service
v Get data facility

For additional information about the PL/I, C, and assembler interfaces refer to IBM
Tivoli NetView for z/OS Programming: PL/I and C and IBM Tivoli NetView for
z/OS Programming: Assembler.

Registration Service
An application uses the CNMHRGS (CNMHREGIST) service routine in PL/I and C
or the DSIHREGS macro in assembler to inform the NetView high performance
transport API that it is ready to send and receive data. The application specifies the
following information:
v Its application name
v A command to run when data is received for that application
v The logmode the application uses

No validity checking of the specified logmode is done, except to ensure that if it
is specified on a REPLACE=YES registration, it matches the existing logmode. To
change the logmode used to send data, an application deregisters and then
reregisters.
If the logmode does not exist in the VTAM logmode table, the first entry in the
table is used for the default. Because VTAM overrides many of the BIND
parameters, the first logmode works in setting up an LU 6.2 session. The session
parameters, however, might or might not be wanted in such a case.

When using the CNMHRGS (CNMHREGIST) service routine, an application can
specify whether it is suspended after it issues a send request, or, if it remains
active, whether replies to the send request are buffered or immediately forwarded

© Copyright IBM Corp. 1997, 2009 69

|

|

to the application. When using the DSI6HREGS macro, an application can specify
whether replies to a send request are buffered or immediately forwarded to the
application.

The application can also specify whether it wants to receive special notification of
session outages at other high performance nodes.

When registering an application, the type of session outage notification it receives
can be specified:

ALL
Session outage notifications are received even if NetView cannot determine
that the outage is caused by a problem.

ERROR
Notifications are received only when NetView can determine that the session
outage is abnormal.

NONE
No notifications are received (the default).

Session outage information is provided only when the last LU 6.2 session to a node
is lost and the high performance transport has been in contact with the node using
the logmode of the lost session. Non-LU 6.2 session outages do not drive the
notification.

This service can also be used to inform the NetView high performance transport
API that the application no longer wants to send or receive data.

Send Service
An application uses the CNMHSMU (CNMHSENDMU) service routine (in PL/I
and C) or the DSIHSNDS macro (in assembler) to send data to another registered
application in its own node or another node. In PL/I and C, the service is
provided by the CNMHSMU (CNMHSENDMU) service routine.

When using the CNMHSMU (CNMHSENDMU) service routine, an application can
specify whether it is suspended after it issues a send request, or, if it remains
active, whether replies to the send request are buffered or immediately forwarded
to the application. When using the DSI6SNDS macro, an application can specify
whether replies to a send request are buffered or immediately forwarded to the
application.

The send macro has several restrictions:
v VTAM must be active for data to be sent, even to an application within the same

node.
v When data is sent within the same node, the origin and destination application

names must be different.
v If you have interconnected networks, destination LU names must be unique to

ensure reliable routing. If a blank NETID is supplied (or the default value is
used), the NetView program fills in the correct NETID prior to sending data
through the network.

70 Application Programmer’s Guide

Get Data Facility
To get the MDS-MU that is on the initial data queue, an application can use one of
the following ways:
v Service routine CNMGETD (CNMGETDATA) for PL/I and C
v Macro DSIGETDS for assembler
v A command list written in REXX, using NetView MSU information functions

such as MSUSEG. Refer to IBM Tivoli NetView for z/OS Programming: REXX and
the NetView Command List Language for additional information.

Implementing High Performance Transport API Applications
To implement a high performance transport API application in the NetView
program, the NetView system programmer and non-NetView system programmer
must follow the instructions described in this section. You can implement the
application in NetView or non-NetView LUs.

NetView System Programmer
To implement a NetView application that uses the high performance transport API,
the NetView system programmer performs the following tasks:
1. Defines an application name (1–8 characters) that is used to identify this

application. The name can consist of characters A - Z (uppercase only) and 0 -
9.

2. Creates an application by writing command processors to send and receive data
using that application identification.
Consider the following guidelines:
v One command processor can handle both sending and receiving.
v The interfaces to send data can be accessed from an HLL or assembler

command processor.
v The interfaces to receive data can be accessed from an HLL, assembler, or

REXX command list.
v As part of designing the application, also consider the tasking structure of

the application. For more information about the application’s tasking
structure, see “Tasking Structure” on page 44.

3. Registers the application using the REGISTER command or the application
name registration services API from a command processor.
The application name registration service API is described in IBM Tivoli
NetView for z/OS Programming: PL/I and C.
When registering the application, decide which logmode the application is to
use:
v Use an existing logmode, if the application can share its data transmissions

with other applications.
All applications using the same logmode at any given time use the same
conversations and the same path to send data to a given LU. While one
application is sending data, another application using the same logmode is
queued until the first send request is processed.
A logmode to which more than one application is registered is driven by the
X'08A80012' sense code in case of session failure.
For example, the RMTCMD function uses the PARALLEL logmode. Other
applications registering with the high performance transport should not
register under the PARALLEL logmode, unless it is acceptable for both

Chapter 8. NetView High Performance Transport API 71

RMTCMD and the user-written application to be driven by the X'08A80012'
sense code if either experiences a session failure.

Note: To determine the logmode with which an application was registered,
use the REGISTER QUERY command.

v Use a logmode that other applications do not use, if the application has a lot
of traffic and you want to prevent interferences with other applications.
Using a unique logmode for each application guarantees that the application
is driven with the X'08A80012' sense code only when that application has
experienced a session failure.
A different logmode enables the following actions:
– The data can be sent on different paths, depending on the logmode to

class of service (COS) to path mapping that is performed during the
VTAM definition.

– System programmers can define unique system parameters for sessions
that the application uses, including maximum RU size.

– The application can send data without waiting for other sends to
complete, except for sends from the same application.

Note: If you copy and rename an existing logmode, the logmode is not
driven by insignificant X'08A80012' sense codes.

4. Use the CNMSMU (CNMSENDMU) service routine in PL/I and C or the
DSI6SNDS macro in assembler to:
a. Send requests to other management services applications in the same node

or a different node.
b. Send replies to requests received from other management services

applications.
5. Receive data from the initial data queue using the CNMGETD

(CNMGETDATA) or DSIGETDS interface.
This data can be:
v An MDS-MU that other applications sent to this application as a request.
v A reply to a request that this application generated.
v Error data in one of the following forms:

– An MDS error message to specify that a particular piece of data identified
by the agent unit of work correlator (UOWC) was not sent.

– A generic error message with a correlator supplied by the MDS router.
– A generic error message with a sense code of X'08A80012' indicating that a

connectivity problem has occurred with the LU specified in the SNA
condition report over the mode the application is using. The message does
not indicate whether the error has affected data the application might
have previously sent.

Note: If multiple applications share the same logmode, both receive the
X'08A80012' error message whenever a problem occurs. This
happens regardless of which application caused the problem during
a send. The application must determine if the outage is significant.

6. Deregister the application using the macro interface in a command list when
you no longer want to send or receive data with this application or when the
default receiving task ends.
When an application is deregistered, any outstanding send requests expecting a
reply are canceled, and MDS error messages are sent to the other applications

72 Application Programmer’s Guide

involved in the transaction. This occurs even for send requests originating
under a task other than the registered task. Deregistration prevents applications
from sending data using the deregistered application name as the origin
application.

Non-NetView System Programmer
In addition to applications running on NetView that use the registration service,
send service, and get data facility, some applications running in LUs without
NetView can communicate with applications running on NetView using the high
performance transport API. For this communication, the non-NetView LU must
implement the MDS_HP_RECEIVE transaction program and send functions similar
to those in the high performance transport API.

For more information about NetView to non-NetView communications and the
differences between the MS transport and the high performance transport, see
“Non-NetView System Programmer” on page 52 and “Differences between
Transports” on page 41.

Maintaining Data Integrity
If you want to maintain data integrity while using the high performance transport
API, use the following techniques:
v Put a sequence number on every flow between two applications. If you do this,

the receiving application recognizes whether a number is missing and whether
an error occurred. After detecting the error, the two applications can
resynchronize.

v Use a start and end message. For example, if the sending application recognizes
that it has 50 pieces of data to send, it can:
– Send a start message indicating that 50 pieces of data exist.
– Send the 50 pieces of data.
– Send an end message indicating that the transfer is complete.
If the application receives start and end messages, but does not receive 50 pieces
of data, it recognizes that an error occurred. If the application receives another
start message before an end message, it means that an error occurred because
the end message is missing from the previous send.
If the application receives an end message followed by more data, an error has
occurred.

v Specify a time interval within which a response must be received (assuming the
request required one). If this time interval passes, the API cancels the request
and sends an MDS error message to the other node to specify that the UOWC is
no longer outstanding and no reply is required. The MDS error message, which
is also sent to the application that generated the request, has a sense code of
X'08A90003'.
You can use the SENSE command to display the meaning of a sense code. Refer
to NetView online help for more information about the SENSE command.

Chapter 8. NetView High Performance Transport API 73

74 Application Programmer’s Guide

Chapter 9. Programming Techniques

This chapter describes programming techniques and provides pseudocode
examples explaining how to use the program-to-program interface (PPI). You can
transport these pseudocode examples to other operating systems.

Writing Effective Programs
Use the following information to write programs that use the PPI most effectively:
v Ensure that you have completed the steps under “Receiving Alerts” on page 12.
v When building the NMVT buffer, do not skip any bytes. All fields must be

adjacent. In some cases, you might need to change the declarations for a field so
that boundaries do not cause bytes to be skipped. For example, in many
languages, a declaration for an integer causes the storage area assigned for the
integer to begin on a word or halfword boundary. This can cause bytes to be
skipped. In that case, declare the variable as a different type (such as character)
that does not cause bytes to be skipped.

v If necessary, reinitialize variables that have been written over during a previous
call to the interface.

v Some of the fields in the request parameter block (RPB) overlap other fields (for
example, ASCB-ADR and ECB-ADR overlap SENDER-ID). If your program
makes multiple calls to the NetView program, you might need to reinitialize
some of these overlapping fields.

v If you use PL/I, refer to IBM Tivoli NetView for z/OS Programming: PL/I and C.
v The PPI runs synchronously with any application that makes a call to the PPI.

The PPI resides in the NetView subsystem address space. After a call is made,
control is passed to the PPI. The NetView subsystem address space must be
active for control to be passed successfully to the PPI.

v When the NetView subsystem address space that you specified with a PPI
option is inactive, the PPI is inactive. When the subsystem address space is
stopped and restarted and the PPI is started, the receivers that were previously
defined in the PPI are still defined, but the receiver’s buffer queue is lost.

v Only one PPI is allowed in a host subsystem. It is contained in the subsystem
interface address space you specify.

v When a task that has a registered receiver ends or abnormally ends, the PPI is
notified and sets the receiver to inactive.

v When a return code of 30 (no buffer available) is generated from request type 22
(receive a buffer), the address of the receive ECB in bytes 20-23 of the RPB is
also returned. This is the ECB returned in the ECB-ADR of the RPB from request
type 4 (define and initialize a receiver).

Note: You can use the 40-byte or 52-byte RPB.

High-Level Language and Assembler Programming Examples
The following pseudocode examples are designed to help you write code that can
be easily transported from one system to another.

Initializing a Receiver
The following pseudocode example shows initializing a receiver:

© Copyright IBM Corp. 1997, 2009 75

(Fill in all required fields in the Request Parameter Block for)
(request type 3.)

CALL CNMCNETV(RPB control block) (Issue request type 3.)

IF RETCODE = 0 THEN
save the ASCB returned from PPI ()

ELSE ()
EXIT with error

ENDIF

(Fill in all required fields in the Request Parameter Block for request)
(request type 4.)

CALL CNMCNETV(RPB control block) (Issue request type 4)

IF RETCODE = 12 THEN (If the connect was delayed.)
(Issue the wait yourself or)

WAIT on ECB passed back in ECB-ADR (issue request 24 to do it for)
(you. Either way a request 24)

and/or (must be issued to make sure)
(the connect completed)

TYPE = 24 (successfully.)

CALL CNMCNETV(RPB control block) (Check to see if the connect)
(succeeded.)

ENDIF

SELECT on RETCODE
(Take appropriate action for the return code.)
(NOTE, it is no longer necessary to save the ECB returned from the)
(connect. PPI always returns the ECB to wait on whenever a wait)
(is necessary.)
ENDSELECT.

Receiving a Buffer
The following pseudocode example shows receiving a buffer:
(Fill in all required fields in the Request Parameter Block for a)
(request type 22, if the length of the incoming buffer is unknown,)
(set the BUFFQ-L to 0. Use same work area used for request type 4.)

RETCODE = 30 (Initialize return code)
(to buffer available.)

LOOP WHILE RETCODE = 30 (Loop until a buffer is)
(successfully received.)

CALL CNMCNETV(RPB control block) (Issue request type 22.)

SELECT on RETCODE

CASE 0
(A buffer was successfully received, take appropriate action)

CASE 31
(The buffer length was too small, DTRUBL will be filled in with)
(the length of the incoming buffer. If DTRUBL was set to zero,)
(this will be the return code sent back.)

GET STORAGE for the number of bytes returned in DTRUBL

CASE 30
(No buffer to receive. Issue a wait yourself or issue a request)
(type 24 to do the wait for you.)

WAIT on ECB returned in ECB-ADR

76 Application Programmer’s Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

or
TYPE = 24

CALL CNMCNETV(RPB control block)

OTHERWISE
(An error occurred, take appropriate action.)

ENDSELECT
ENDWHILE

Sending a Buffer Synchronously
The following pseudocode example shows sending a buffer synchronously:
(Fill in all required fields in the Request Parameter Block for)
(request type 12 or 14.)

CALL CNMCNETV(RPB control block) (Issue request type 12 or 14.)

SELECT on RETCODE

CASE 0
(Send successfully completed, take appropriate action.)

OTHERWISE
(An error occurred, take appropriate action.)

ENDSELECT

Disconnecting a Receiver
The following pseudocode example shows disconnecting a receiver:
(Fill in all required fields in the Request Parameter Block for)
(request type 9, restore ASCB-ADR field for MVS. Use same work area)
(that was used for request type 4.)

CALL CNMCNETV(RPB control block) (Issue request type 9.)

SELECT on RETCODE

CASE 0
(Disconnect successfully completed, take appropriate action.)

OTHERWISE
(An error occurred, take appropriate action.)

ENDSELECT

REXX Programming Examples
The following pseudocode examples illustrate the usage of the DSIPHONE REXX
external routine.

Usage Scenario
Two application programs running anywhere that TSO REXX runtime
environments are available, within the same MVS image, can send data to and
receive data from each other using a PPI receiver name known to both
applications.

The following example shows a server/client application:

Chapter 9. Programming Techniques 77

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Client application

/* REXX */
/* Define a new PPI receiver and name it CLIENT */
Call DSIPHONE 'OPENRECV', 'CLIENT'
command = 'Some commmand to be processed.....'
/* Send command to PPI receiver, SERVER, */
/* specifying the sender's name is CLIENT */
call DSIPHONE 'SEND', 'SERVER', 'COMMAND', 'CLIENT'
/* Wait (forever) for data to arrive on our PPI receiver. */
/* When it arrives, receive it into a stem called output. */
/* but only if the sender's receiver name is SERVER. Store */
/* the SAF userid of the sender in REXX variable, safuid */
call DSIPHONE 'RECEIVE', 'CLIENT', 'OUTPUT.',,,,'SAFUID','SERVER'
if safuid = 'expected SAF userid for SERVER' then
do
/* process output. stem */
end
else /* this data is not from whom we expected it to be from */
nop

/* Delete the PPI receiver named CLIENT */
call DSIPHONE 'CLOSE', 'CLIENT'
exit 0

Server application

/* REXX */
/* Define a new PPI receiver and name it SERVER */
call DSIPHONE 'OPENRECV', 'SERVER'
do forever
/* Wait (forever) for data to arrive on receiver SERVER. Receive */
/* each buffer into REXX variable, cmd. Put the sender's receiver */
/* name into REXX variable, clientReceiver */
call DSIPHONE 'RECEIVE', 'SERVER', 'CMD', 'CLIENT_RECEIVER'
/* process command and put the result into the REXX stem, output. */

/* send stem output. to the sender's receiver name */
call DSIPHONE 'SEND', client_receiver, 'OUTPUT.', 'SERVER'
end
exit

Common Operations Services Commands
The common operations services (COS) commands support and enhance the
NetView program control of service points. A service point application manages
non-SNA devices, such as front-end line switches and multiplexers. You can send
commands to the service point application to do problem determination for the
non-SNA devices.

You can use the following NetView COS commands with service points for
problem determination. Refer to NetView online help for the format of the COS
commands.

LINKTEST
Requests that the service point test a given link or link segment.

LINKDATA
Requests that the service point return device data for a given link or link
segment.

LINKPD
Requests problem determination analysis from the service point on a given
link or link segment.

78 Application Programmer’s Guide

RUNCMD
Sends service point application commands to the service point
applications. Replies are returned to the operator or the command list
issuing RUNCMD.

As part of its outgoing record, RUNCMD builds an unformatted subvector
31. This unformatted subvector contains no subfields, in deviation of the
current architecture. The incoming reply can be formatted or unformatted.

The COS commands are long-running commands that suspend the command list
when they are run. The command list resumes when the COS command is
completed. When the command is completed, a return code is set.

For more information about the COS commands, refer to IBM Tivoli NetView for
z/OS Programming: REXX and the NetView Command List Language. For detailed
information about the vector and SNA formats used by COS, refer to the following
publications:
v SNA Management Services Reference

v Systems Network Architecture Formats

COS Command Flow
COS commands can flow over the communication network management interface
(CNMI) or the management services (MS) transport. The DSIGDS task registers
with the MS transport as SPCS (COS_NETOP) to enable COS commands to flow
over the MS API.

When commands flow over the MS API, the major vector is placed inside the
X'1212' GDS variable of the control point management services unit (CP-MSU) of a
multiple-domain support message unit (MDS-MU). The SP parameter of the
RUNCMD command is the destination LU name, and EP_COS is the destination
application name.

If the NET parameter is not specified in a COS command, NetView checks the
CNMI configuration table for the service point (SP) name. If NetView finds the SP
name, the CNMI transport is used. If the NetView program does not find the SP
name, the MS transport is used. If the MS transport fails with SNA sense category
and modifier X'08A8' or X'08A9', a retry takes place on the CNMI. If the MS
transport attempt fails for any other reason, no retry occurs and a message is
issued.

If the CNMI request succeeds, the SP name is placed in the COS configuration
table. You can use the PURGE command to purge the table. You can use the
DEFAULTS command to set the timeout value of COS commands flowing over the
CNMI and MS transport. Refer to NetView online help for more information about
the PURGE and DEFAULTS commands.

If replies to RUNCMD have more than 32 KB of data, the issuer of the RUNCMD
receives message DSI296 INVALID DATA RECEIVED. No notification is sent to the
Service Point Application indicating the reply was rejected.

The maximum size for a CP_MSU is 31743 (X'7BFF') bytes. The DSIGDS task can
handle 32 KB of data, but because the service point application might not be aware
of the transport being used, use the smaller maximum reply size of 31743 bytes.

Chapter 9. Programming Techniques 79

Message to Operator
The message to operator (MTO) sends unsolicited messages to a NetView operator
console. MTO is serviced by the DSIGDS task. You can use automation to trap the
messages.

The NetView program uses the X'50' subfield of the X'06' subvector of the X'006F'
major vector to route the MTO to the NetView operator console. All MTOs are sent
to automation in the native MSU format. Note that some MTOs arrive enveloped
in a MDS-MU across LU 6.2 sessions, whereas other MTOs arrive enveloped in
NMVTs across SSCP-PU sessions. Regardless of the envelope, all MTOs are first
sent to automation as an MSU (MDS-MU or NMVT). If a match for the MSU MTO
exists in the automation table, the MTO is not displayed to the NetView operator’s
console. If no a match for the MSU MTO exists in the automation table, the MTO is
sent to automation as a series of single line messages. After the message
automation process, the single line messages are sent to the NetView operator
console.

Using COS Command Lists
The NetView program provides command lists that issue COS commands. You can
modify these command lists for your particular application or use them for your
own command lists. The following list gives the names and descriptions of each of
these command lists:

Name Description

INITCNFG
Contains the service point resource information.

The configuration defined in the INITCNFG command list must match the
configuration of the lines controlled by your service points. Consider
adding the INITCNFG command list to the CNMSTUSR or CxxSTGEN
member so that it runs automatically. For information about changing
CNMSTYLE statements, see IBM Tivoli NetView for z/OS Installation: Getting
Started.

Note: This command list does not work if you use lowercase values.

You can modify the following fields to contain the configuration of all the
lines you control with the COS commands:
LINE Line name
SP Service point name
APPL Application name
UN Using- node name
RD Remote device name
NET Network name

ADDLINE
Is used to define common global variables to the SPLOOKUP command
list for a new line. The syntax is:

ADDLINE

�� ADDLINE LINE ,SP ,APPL
,UN ,RD ,NET

��

SPLOOKUP
Eables you to issue COS commands for a given line. SPLOOKUP

80 Application Programmer’s Guide

|
|
|
|

determines the parameters needed to issue a COS command for a line
using the global variables set up by INITCNFG.

If SPLOOKUP is called with the LINE option, it returns the SP name, the
APPL name, using-node, and remote device for the specified line in task
global variables SP, APPL, UN, RD, and NET. If called with the SP option,
SPLOOKUP returns a list of lines defined to the specified SP name in the
task global variables LINECNT, LINE1, LINE2, and so on. The syntax is:

SPLOOKUP

�� SPLOOKUP LINE linename
SP spname

��

FINDNCP
Displays events that the NetView program receives from the using-node
for a given service point. This command list is useful if you are having
problems getting data back from a service point.

FINDNCP looks up the using-nodes for a given SP. If multiple using-nodes
are defined, they are listed. If only one using-node is defined, FINDNCP
calls the Most Recent Events panel of the hardware monitor to show any
events for the using-node. Usually, the using-node is the NCP linked to the
SP. The syntax is:

FINDNCP

�� FINDNCP spname ��

TESTSP
Is used to issue COS commands for a given line. TESTSP calls SPLOOKUP,
issues the COS commands, and displays the results. You can use TESTSP
as a base for command lists that run COS commands automatically.
TESTSP also demonstrates how to display results of the LINKTEST and
LINKDATA commands. The syntax is:

TESTSP

�� TESTSP linename ��

TESTRCMD
Tests the use of RUNCMD with the CLISTVAR keyword. This command
list issues RUNCMD to run a command at the service point. Results are
stored in command list variables, and the data is displayed when control is
returned. The syntax is:

TESTRCMD

�� TESTRCMD spname applname 'command'
netname

��

Where:

command
Is the command to run at the service point.

Chapter 9. Programming Techniques 81

If you do not specify the net variable, the system defaults to the local
network name. The command must be in single quotation marks.

82 Application Programmer’s Guide

Chapter 10. Using the Trace Facility

Use the PPI trace facility to set up a trace in the PPI for either an individual
receiver or for all current and future receivers. The PPI trace facility writes a trace
record each time a user defines, deactivates, or deletes a receiver to the PPI and
each time a buffer is sent or received.

You can use the PPI trace facility to debug problems or analyze performance. For
example, if applications that use the PPI are not communicating correctly, you can
enable the PPI trace facility to gather information to help determine the problem in
the dialog. The trace facility creates a log of all the buffers that are sent to and
received by the applications. You can use the log to verify that the correct dialog
occurred between the applications or that the applications correctly received all the
buffers.

As another example, you can use the log created by the PPI trace facility to
analyze the performance of applications that use the PPI. If congestion occurs at
the interface, the PPI trace records show how long buffers are on the PPI buffer
queue before being received by the application. Using this trace information,
applications can be modified to optimize the flow of information buffers.

Controlling the Trace Facility
You control the PPI trace facility with the TRACEPPI command. You can use the
TRACEPPI command to start, stop, modify, or end the PPI trace facility. See
NetView online help for more information about the TRACEPPI command.

When you enable a trace for the first time, you can specify whether trace
information is written to internal storage or to an external data set, using the
generalized trace facility (GTF).

Writing to Internal Storage
If you specify that trace information is written to internal storage, you can specify
the size of the storage area for the trace information by using the SIZE parameter
when you define the PPI trace. This storage is allocated from the PPI address
space.

Note: If the storage area for the trace information is too large, applications using
the PPI can encounter out-of-storage conditions.

The PPI address space is contained in the subsystem interface address space. You
can access the PPI trace information by dumping the PPI address space and the
common storage area (CSA). If the subsystem interface is brought down while the
PPI has an active internal trace, the subsystem interface dumps the internal PPI
trace information.

Writing to External Storage with GTF
To use the GTF option to collect PPI trace information, you need to install, activate,
and enable GTF for PPI traces. If you specify the GTF option when you issue a
TRACEPPI command, trace records are written to an external data set. An internal
PPI trace table is not created.

© Copyright IBM Corp. 1997, 2009 83

When you start GTF, specify the USRP parameter and enter the PPI event ID
(X'5EF'). Without the event ID, the trace enters a GTF disabled state, and all
records logged during the disabled state are lost. To re-enable the GTF, stop and
restart GTF with the USRP parameter and the PPI event ID (X'5EF').

If you start GTF with a user-cataloged procedure that does not have a SYSLIB DD
statement, issue the system console commands shown in Table 8.

Table 8. Starting the PPI Generalized Trace Facility

You enter... GTF responds...

START GTF,,,(MODE=EXT) xx AHL100A SPECIFY TRACE OPTIONS

R xx,TRACE=USRP,... yy AHL100A SPECIFY TRACE KEYWORDS--USR=

R yy,USR=(5EF)

While a GTF trace is active, errors can occur such as:
v The GTF address space becomes inactive
v The GTF buffers become full
v A paging error occurs

When an error occurs, the subsystem interface address space issues an MVS
console message describing such errors, and the PPI trace is put into GTF disabled
state.

For more information about GTF or GTF trace buffers, refer to the MVS library.

Monitoring the Trace Facility
You can use the DISPPI command to monitor the receivers that are traced. Output
from the DISPPI command shows information about the receiver’s buffer or trace
status. Also, the DISPPI command displays information about the PPI trace table.

Refer to the NetView online help for the format of the DISPPI command. See the
IBM Tivoli NetView for z/OS Troubleshooting Guide to interpret the results of the PPI
trace.

84 Application Programmer’s Guide

Appendix A. Data Formats for LU 6.2 Conversations

This chapter describes the formats of the following principal data types used by
the management services (MS) transport and its NetView applications, including
the hardware monitor:
v Multiple-domain support message unit (MDS-MU) header structure
v MDS data types
v MDS error message format

Figure 9 is a conceptual view of the format used by the MDS-MU (X'1310') general
data stream (GDS) variable. The MDS-MU contains an MDS header and an
application program GDS variable.

The entire MDS-MU (MDS header and application program GDS variable) must be
less than 32767 (X'7FFF') bytes in length. The MDS header must be 1024 (X'400')
bytes in length. The maximum size permitted for the application program GDS
variable in the MDS-MU is 31743 (X'7BFF') bytes.

The application program GDS variable contains MS application program data
supplied by the MS application program. It can be a control point management
services unit (CP-MSU) (X'1212') GDS variable, an SNA condition report (SNACR)
(X'1532') GDS variable, or some other GDS variable.

MDS Header Structure
Figure 10 on page 86 shows the format of an MDS header. The MDS header is the
information used for routing between MS application programs. The MDS header
is composed of two GDS variables:
v MDS routing information (X'1311') GDS variable
v Agent unit of work correlator (X'1549') GDS variable

NetView checks the syntax of MDS-MU headers received from other nodes. If a
syntax error is found, a software alert is generated for the hardware monitor and
an MDS error message is written to the system log. The MDS error message
contains the first 100 bytes of the failed MDS-MU.

MDS Routing
Information
(X'1311') GDS
Variable

UOW Correlator
(X'1549') GDS
Variable

SNA Condition
Report
(X'1532') GDS
Variable

MDS-MU (X'1310') GDS

Figure 9. Format of an MDS-MU GDS

© Copyright IBM Corp. 1997, 2009 85

MDS Routing Information (X'1311') GDS Variable
The routing information GDS variable contains the data required for MDS routing.
It consists of the following structures:
v Location names

– Origin location name (X'81') MS subvector
– Destination location name (X'82') MS subvector

v Flags (X'90') MS subvector

Location Names
Two location names are contained in the MDS routing information GDS variable:
the name of the originating location and the name of the destination location. Each
location name MS subvector consists of the network ID (NETID) of the LU, the
unqualified LU name, and an MS application program name.

Create the NETID and LU names with the following characteristics:
v Use characters from the set A - Z, 0 - 9, $, #, and @.
v Alphabetic characters must be uppercase and the first character must be

non-numeric.
v The characters $, #, and @ are supported for migration purposes only. Do not

use them in LU or network names.
v You can include trailing blanks, but they are ignored for comparison purposes.

Origin Location Name (X'81') MS Subvector: The origin location name (X'81') MS
subvector consists of the structures in Table 9.

Table 9. Contents of Origin Location Name (X'81') MS Subvector

Structure Name GDS/SV/SF Description of Contents

NETID X'01' The network ID of the origin LU.

LU name X'02' The unqualified LU name of the origin.

MS application program
name

X'03' An MS application program name:

v A 4-byte architecturally defined name

v A 1- to 8-byte installation defined name.

Destination Location Name (X'82') MS Subvector: The destination location name
(X'82') MS subvector consists of the structures in Table 10.

Table 10. Contents of Destination Location Name (X'82') MS Subvector

Structure Name GDS/SV/SF Description of Contents

NETID X'01' The network ID of the destination LU.

MDS Header

MDS-MU

LLLL 1310 LLLL 1311 LL 81LLLL 1549

Agnt UOW

Agent UOW

Routing
Info

LL LL82 90.

Figure 10. Format of an MDS Header

86 Application Programmer’s Guide

Table 10. Contents of Destination Location Name (X'82') MS Subvector (continued)

Structure Name GDS/SV/SF Description of Contents

LU name X'02' The unqualified LU name of the destination.

MS application program
name

X'03' An MS application program name:

v A 4-byte architecturally defined name

v A 1- to 8-byte installation defined name.

Flags (X'90') MS Subvector
This subvector contains the following indicators:
v Message Type

The message type can be one of the following types:
– MDS request
– MDS reply
– MDS error message

These message types characterize the messages from the perspective of the
NetView MS transport. The message type at the application program level can
be different.
Table 11 summarizes the relationship between MDS message types and
application program-level flows.

v First MDS Message Indicator

This flag is set to 1 when the message is the first (or only) message for the unit
of work.

v Last MDS Message Indicator

This flag is set to 1 when the message is the last (or only) message for the unit
of work. It is set to zero (0) when additional messages are expected.

Table 11. Settings of MDS Message Type First and Last MDS Message Flags

Application
Program-Level Flow

MDS
Message Type

First MDS
Message Flag

Last MDS
Message Flag

Request without reply

Unsolicited data without
acknowledgment (alert)

MDS request 1 1

Request with reply

Unsolicited data with
acknowledgment

MDS request 1 0

Reply (not last) MDS reply 0 0

Last (or only) reply

Acknowledgment

MDS reply 0 1

MDS error message MDS error message 1 1

MDS-MUs contain a correlator field (described under “Agent Unit of Work
Correlator (X'1549') GDS Variable” on page 88) that links requests and replies
together. Error messages also contain a correlator that identifies failing MDS send
requests. If replies are sent with the last indicator off, multiple MDS-MUs can be
sent as replies to the same request. When this occurs, NetView buffers the replies

Appendix A. Data Formats for LU 6.2 Conversations 87

until the last one is received and then sends all data to the application at the same
time. If a timeout occurs before the last reply is received, all previous replies are
discarded.

Agent Unit of Work Correlator (X'1549') GDS Variable
This correlator provides a value unique across time for the MS application
program that assigns it, allowing MDS-MUs containing requests, replies, and error
messages to be correctly correlated by both MDS and the application programs.

Correlator Contents
The contents of the correlator are described in Table 12. The structures are broken
down by subvector (SV) and subfield (SF).

Table 12. Contents of Agent Unit of Work Correlator (X'1549') GDS Variable

Structure Name GDS/SV/SF Description of Contents

Requester location
name

X'01' Name of node where the unit of work originated

X'01' NETID of originating node

X'02' LU name of origination node

Requester agent X'04' Name of originating MS application

Sequence number
date and time

X'02' Uniquely identifies unit of work

Sequence Number Date and Time Structure: Table 13 describes the contents of
the sequence number date and time structure of the agent unit of work correlator
(X'1549') GDS variable.

Table 13. Contents of Sequence Number Date and Time (SEQNO DTM) Structure

Field Name Byte
Offset

Description of Contents Example
Values

Length 0 Length of SEQNO DTM structure X'11'

Key 1 Key (always X'02') X'02'

SEQNO 2-5 Unique binary sequence value X'00000001'

Date
6, 7
8
9

Date of unit of work origination
4-digit year, in hexadecimal
2-digit month, in hexadecimal
2-digit day of month, in hexadecimal

X'07C90B11'

Time
10
11
12
13

Time of unit of work origination
2-digit hour, in hexadecimal
2-digit minute, in hexadecimal
2-digit second, in hexadecimal
2-digit hundredth of second, in hexadecimal

X'173B3B63'

Time flag 14 Indicates whether date/time is local or
Greenwich Mean Time (GMT)

X'E9'- date/time is GMT (no offset)
X'4E'- date/time is local (ahead of GMT)
X'60'- date/time is local (trails GMT)

X'60'

GMT offset
15
16

Present only when date/time is local
2-digit hour offset in hexadecimal
2-digit minute offset in hexadecimal

X'0400'

88 Application Programmer’s Guide

The Example Values in Table 13 on page 88 describe a sequence number date and
time structure of X'11020000000107C90B11173B3B3B600400'. This hexadecimal string
indicates the following information:
v Structure length is 17 (X'11').
v Structure key, which is always 2 (X'02').
v A unique sequence number of X'00000001'.
v Local date is 17 November 1993 (X'07C90B11').
v Local time is 23:59:59.99. (X'173B3B63').
v Local time trails GMT (X'60').
v Offset from GMT is minus 4 hours (X'0400').

The GMT, also known as Coordinated Universal Time (UTC), is understood from
the example data to be 18 November 03:59:59.99.

Accepting an MDS-MU
Hardware and software products in non-NetView nodes can send a CP-MSU
within an MDS-MU to a hardware monitor MS application (ALERT_NETOP
X'23F0F3F1') using the NetView MS transport. An MDS-MU has a key of X'1310'
for its header.

MDS-MU Example
Figure 11 shows an example of an MDS-MU message. The MDS message type is
request without reply. It is being sent from a network known as NETA from an LU
known as CNM01 and an application known as USERAPPL. It is going to an LU
called CNM02 in the same network and to an application named ALERT_NETOP
(X'23F0F3F1'). The data content is a CP-MSU containing an alert. See Figure 10 on
page 86 for the format of an MDS header.

MDS Data Types
The application GDS variable can be one of the following MDS data types:
v A CP-MSU
v An SNA condition report (SNACR)
v A routing report
v A network management vector transport (NMVT)
v A routing and targeting instruction (R&TI)

These data types are used by the MS transport and its NetView applications,
including the hardware monitor. A major vector is a GDS variable. These data
types are provided to allow operations management served applications to send
architected operations management commands to remote systems for processing
and receive commands from remote systems.

00B41310 00371311 19810601 D5C5E3C1 0702C3D5 D4F0F10A
MDS Routing --� 03E4E2C5 D9C1D7D7 D3158206 01D5C5E3 C10702C3 D5D4F0F2
Information 060323F0 F3F10590 00C00000 33154916 010A01D5 C5E3C140 Agent Unit

4040400A 02C3D5D4 F0F14040 400A04E4 E2C5D9C1 D7D7D30F �-- of Work
02000000 03005B07 020A1413 00E90046 12120042 00000B92 Correlator
00000121 01000000 01101000 0D110E0A 0040F1F2 F3F4F540

CPS-MSU ------� 40110303 0109D5C1 D4C5F140 4040E3E8 D7F10693 10011023
0C960601 10221023 04813110

Figure 11. MDS-MU Message

Appendix A. Data Formats for LU 6.2 Conversations 89

CP-MSU Format
Figure 12 shows the format of a CP-MSU. For operations management served
applications the CP-MSU (X'1212') consists of data that includes the R&TI
information. The CP-MSU can also contain an SNA condition report (SNACR).

The maximum length allowed for the CP-MSU is 31743 (X'7BFF') bytes.

Accepting a CP-MSU
Programs in the same node as NetView (regardless of address space) can use the
PPI with function code 12 to send an NMVT or CP-MSU with a valid hardware
monitor major vector to the hardware monitor.

The following major vectors are valid:
v X'0000' Alert
v X'0001' Link event
v X'0002' Resolve
v X'0025' PD statistics
v X'000F' ISDN/CMIP statistics
v X'132E' RECFMS envelope

CP-MSU has a key of X'1212'.

These major vectors are the expected major vectors. However, the ALERT_NETOP
function does not limit the major vectors to those listed. If an unacceptable major
vector is presented to the hardware monitor, it can later cause an error.

An exception is made for the first occurrence of the parameter major vector R&TI
(X'154D'). This parameter major vector is not processed and does not cause an
error. That R&TI is attached behind the next major vector, if one exists, when that
next major vector is copied in a CP-MSU.

Multiple Major Vectors in a CP-MSU
The number of major vectors in a CP-MSU has no limit.

The multiple major vectors to be processed are separated using first-in, first-out
(FIFO) queuing and processed individually. A CP-MSU with multiple major vectors
is divided into that number of CP-MSUs, each with one of the major vectors that
was in the input CP-MSU. The remaining parts of the hardware monitor process
the new CP-MSUs.

If the initial CP-MSU arrives in an MDS-MU from the MS transport, each new
CP-MSU has an image of the MDS header from that MDS-MU prefixed to it before
being processed. Therefore, if the initial input was a CP-MSU, the NetView
automation table, for an alert or resolve, examines a single major vector in a

Length X'1212' Data
(Length minus 4 bytes)

Figure 12. Format of a CP-MSU

90 Application Programmer’s Guide

CP-MSU. The argument applied to automation is a single major vector in a
CP-MSU within an MDS-MU. Prepare the user’s automation table accordingly.

For operations management, a CP-MSU can have only one operations management
architected major vector.

Routing Report Format
Routing reports are special CP-MSUs used by operations management to report
routing errors at the application level. A special null subvector in the CP-MSU,
X'00040077', identifies it as a routing report. The routing report contains an R&TI
and an SNA condition report. The SNA condition report format is different from
the format used in MDS error messages, which contain only an MDS header and
SNA condition report, not an SNA condition report within a CP-MSU. The SNA
condition report used in the routing report, contains a structure report, as defined
by SNA architecture. Figure 13 shows the structure of the routing report.

NMVT Format
Figure 14 shows the format of a network management vector transport (NMVT).
An NMVT contains a header and B bytes of data. The length of B plus 8 is a
parameter outside the NMVT.

Refer to Systems Network Architecture Formats for more information about data type
formats.

R&TI Format
Figure 15 on page 92 shows the format of an R&TI. The R&TI format includes the
following structures:

R&TI header
4 bytes; 2-byte length field of entire variable (X'154D')

Name list header
2 bytes; 1-byte length field (2-bytes and subfield lengths) (X'06')

Destination application
2-byte header plus destination application name (length + X'50')

LLLL 1212 0004 0077 LLLL 154D LL 06 LL 60

CP-MSU Routing
Report

CP-MSU

R&TI

. LLLL

SNA Condition Report

Routing and Target Instruction

1532 06 7D SSSSSSSS LL 01 03 01

01
or
02

Structure Report

SNA
Report Code

SNACR Struc
State

Parent
Specification
or Structure
Specification

. .

Figure 13. Format of a Routing Report

41038Dxxxxxxxxxx B Bytes of Data

Figure 14. Format of an NMVT

Appendix A. Data Formats for LU 6.2 Conversations 91

Origin application
2-byte header plus destination application name (length + X'60')

Destination instance identifier
2-byte header plus destination instance used for task name (length + X'70')

Origin instance identifier
2-byte header plus origin instance used for task name (length + X'80')

MDS Error Message Format
The MDS error message is the vehicle for reporting errors detected by an MDS
router at any point along the path of a transaction. It is also used by MS
application programs under certain circumstances. Figure 16 shows a high-level
composition of an MDS error message.

Note: The MDS error message is not a unique GDS variable. It is an MDS-MU
with a message type of MDS error message. It always contains the SNA
condition report (X'1532') MDS variable as its application program GDS
variable.

An MDS error message is created for two categories of errors:
v Routing errors in which an individual MDS-MU cannot be delivered successfully

to its destination application program. However, no error report is created for
nondelivery of an MDS error message.

v Transaction failure in which the error does not pertain to an individual
MDS-MU, but to the sequence of such message units that comprise a transaction.
For example, it is a transaction failure if the NetView program is able to
determine, from either the receipt of session outage notification or the expiration
of the timer, that no reply is forthcoming for a request that expected one.

The MDS error message has the following characteristics:
v It is sent either from an MDS router in the node that detected the error or from

one of the communicating MS application programs. The MDS router is a
function of the MS architecture implemented by NetView.

Destination
Instance
Identifier
Subfield

Origin
Instance
Identifier
Subfield

Origin
Application
Subfield

Destination
Application
Subfield

Name
List
Header

R&TI
Header

Dest
Appl
Name

Origin
Appl
Name

LL X'154D' L X'06' Subfield
Lengths

L X'50' L X'60' L X'70' Dest
Instance

L X'80' Origin
Instance

Figure 15. Format of an R&TI

MDS Routing
Information
(X'1311') GDS
Variable

UOW Correlator
(X'1549') GDS
Variable

SNA Condition
Report
(X'1532') GDS
Variable

MDS-MU (X'1310') GDS

Figure 16. Format of an MDS Error Message

92 Application Programmer’s Guide

v The agent unit of work correlator (X'1549') GDS variable in the MDS header
identifies the MDS-MU that cannot be delivered or the transaction that failed.

v The application program data is an SNA condition report (X'1532') GDS variable,
which carries an SNA report code (SNA sense data), identifying the precise error
that was detected. An MDS error message created by MDS also identifies the LU
and application program names for the other application program that was
involved in the transaction, but not the LU and MS application programs that
are the destination of the MDS error message. The LU and MS application
programs are identified in the SNA condition report (X'1532') GDS variable
because the origin of the MDS error message is the MDS router, not the partner
application program.

Table 14 shows the contents of an MDS error message created by an MDS router.

Table 14. Contents of an MDS Error Message (X'1310') Created by MDS Router

Structure Name GDS/SV/SF Description of Contents

MDS routing information
Origin location name

NETID
LU name
Application ID

Destination location name
NETID
LU name application ID
Application ID

Flags
MDS message type
First MDS message
indicator
Last MDS message
indicator

X'1311'
X'81'

X'01'
X'02'
X'03'

X'82'
X'01'
X'02'
X'03'

X'90'

NETID of reporting node
LU name of reporting node
X'23F0F1F0' (MDS router)

NETID of destination node
LU name of destination program
Destination MS application
program

MDS error message (X'02')
1-first message for unit of work
1-last message for unit of work

Agent unit of work correlator
Requester location name

Requester NETID
LU name

Requester agent
Sequence number date and
time structure

X'1549'
X'01'

X'01'
X'02'

X'04'
X'02'

Correlator of failed transaction
Name of node where work originated

NETID of node
LU name of node

Name of originating MS application
Unique work unit identifier

SNA condition report
SNA report code
Reported on destination prefix
Reported on location name

Reported on NETID
Reported on node ID

Reported on destination suffix
Reported on agent

X'1532'
X'7D'
X'08'
X'09'

X'01'
X'02'

X'0B'
X'04'

Sense data indicating nature of error
(delimiter)
Name of node

NETID of node
LU name of node

(delimiter)
MS application name

MDS Error Message Example
Figure 17 on page 94 shows the MDS router at CNM02 generating an error
message to send to USERAPPL at CNM01 because ALERT_NETOP (X'23F0F3F1')
was not registered at CNM02. See Figure 13 on page 91 for the format of an SNA
condition report.

Appendix A. Data Formats for LU 6.2 Conversations 93

Application Program-Level Error Reporting
The MDS error message is not the only method for reporting application
program-detected errors. Other errors include:
v Command reject
v Parsing exception
v Function not supported

These errors are reported with application program-defined techniques such as
reply major vectors, but under some circumstances, an MS application program
must be able to end an outstanding MDS transaction unconditionally.

For example, an MS application program might start a timer when an MDS request
is sent to another MS application program. If no reply has been received when the
timeout period has elapsed, the sending MS application program can conclude that
something is wrong with the destination application program, causing it not to
respond. Because the sending MS application program will not wait for the reply
any longer, it must end the outstanding MDS transaction with an MDS error
message.

The format of an MDS error message sent by an MS application program is similar
to that shown in Table 14 on page 93, except that the SNA condition report
(X'1532') GDS variable in this MDS error message contains just the SNA report
code containing the sense data. The reported-on location name and reported-on
agent structures are not used because the partner application program is fully
identified in the destination of the MDS error message.

00911310 00371311 15810601 D5C5E3C1 0702C3D5 D4F0F206
0323F0F1 F0198206 01D5C5E3 C10702C3 D5D4F0F1 0A03E4E2
C5D9C1D7 D7D30590 02C00000 33154916 010A01D5 C5E3C140
4040400A 02C3D5D4 F0F14040 400A04E4 E2C5D9C1 D7D7D30F
02000000 03005B07 020A1413 00E90023 1532067D 08A80003
02080F09 0601D5C5 E3C10702 C3D5D4F0 F2020B06 0423F0F3
F1

Figure 17. MDS Error Message

94 Application Programmer’s Guide

Appendix B. Program-to-Program Interface Return Codes

This appendix describes the return codes generated by the program-to-program
interface (PPI) and the hexadecimal equivalents for each request type. See
“Building the Request Buffer” on page 13 for more information on the request
parameter buffers.

Table 15. Return Codes Generated by Program-to-Program Interface Request Types

Return
Code

Hex
Value

Description Request Type

1 2 3 4 9 10 12 14 22 23 24

0 X'0' The request completed successfully. X X X X X X X X X

4 X'4' The specified receiver is not active. The
program-to-program interface has
received a copy of the NMVT,
CP-MSU, or data buffer.

X X

10 X'A' The program-to-program interface is
available to process user requests.

X

14 X'E' The receiver program is active. X

15 X'F' The receiver program is inactive. X X X

16 X'10' The receiver program is already active. X

18 X'12' The receiver ECB is not zero. X

20 X'14' The request code is not defined.

22 X'16' The program issuing this request is not
running in primary addressing mode.

X X X X X X X X X X

23 X'17' The user program is not authorized. X

24 X'18' The program-to-program interface is
not active.

X X X X X X X X X X X

25 X'19' The ASCB address is not correct. X X X X

26 X'1A' The receiver program is not defined. X X X X X X X

28 X'1C' An active subsystem interface address
space was found, but an active
program-to-program interface address
space was not found.

X X X X X X X X X X X

30 X'1E' No data buffer in the receiver buffer
queue.

X X

31 X'1F' The receiver buffer is not large enough
to receive the incoming data buffer.

X

32 X'20' No NetView storage is available. X X X

33 X'21' The buffer length is not valid. X X X

35 X'23' The receiver buffer queue is full. X X

36 X'24' ESTAE recovery cannot be established
as requested.

X X X X X X X

40 X'28' SENDER-ID or RECEIVER-ID is not
valid.

X X X X X X X

90 X'5A' A processing error has occurred. X X X X X X X X X X

© Copyright IBM Corp. 1997, 2009 95

96 Application Programmer’s Guide

Appendix C. Network Asset Management

This appendix can be used to help you write NetView command lists. It contains
general-use programming interface and associated guidance information.

This appendix provides information about:
v Vital product data (VPD) returned from the VPDCMD command
v The sample network asset management command lists
v The record formats used by the sample network asset management command

lists

Use the information provided in this appendix as a reference when interpreting
messages returned from the VPDCMD command, when modifying the sample
network asset management command lists, or when writing your own network
asset management command lists.

Vital Product Data Descriptions
Messages that are returned in response to the VPDCMD command contain the
following types of VPD:
v Answering node configuration data
v Product data
v DCE data, which, beginning with NetView for z/OS V5R4, is deprecated
v Link configuration data, which, beginning with NetView for z/OS V5R4, is

deprecated
v Sense data
v Attached device configuration data
v Product set attributes

Different devices support different fields of the subvectors that return the VPD. A
message is built using all the fields supported by an answering device. The
message reflects all the VPD that is supplied by the device, including any
supported fields that the device returns with values of blanks or zeros. Some
devices can return values of blanks or zeros for fields that have no meaning to the
device. You can obtain more information on some of the fields from the applicable
hardware and software publications.

The layout of the subvectors formatted by network asset management are in this
section. For more information about the subvectors and their major vectors, refer to
Systems Network Architecture Formats.

Answering Node Configuration Data
Answering node configuration data describes the node that answered the VPD
request. Answering node configuration data is returned in the following messages:
v DWO100I
v DWO103I

Messages DWO100I and DWO103I contain the same fields. Message DWO103I is
issued instead of message DWO100I if the configuration reported by VTAM

© Copyright IBM Corp. 1997, 2009 97

|

|
|

includes more names than the routine can manage. This situation can occur when
the amount of storage allocated during initialization is not sufficient. You specify
the amount of storage on the VPDSTOR operand of the VPDINIT statement.
Because of the storage restriction, message DWO103I does not contain information
about the complete configuration. The higher level node identification is not
included.

Messages DWO100I and DWO103I are two-part messages. One part of the message
contains information about the node where the VPD request originated. The other
part of the message shows the configuration of the originating node.

The format of messages DWO100I and DWO103I is:

Where:

reqid
Is the ID that correlates this reply to a specific request.

ORIG nodetype nodename
Describes the node where the VPD request originated.

nodetype can have one of the following values:
PU The physical unit name
LSN The link station name
LU The logical unit name
LINK The link name
CH/LINK The channel-link name

nodename is the name of the originating node.

CNFG nodetype nodename
Describes the configuration of the originating node.

nodetype can have one of the following values:
PU The physical unit name
LSN The link station name
LU The logical unit name
LINK The link name
CH/LINK The channel-link name

The nodenames are the names that make up the configuration of the originating
node.

Product Data (Subvectors X'10' and X'11')
Message DWO102I contains data about the type of product of a particular node.
The data is returned in subvectors X'10' and X'11'.

The format for message DWO102I is:

Where:

reqid
Is the ID that correlates this reply to a specific request.

REQID reqid : ORIG nodetype nodename CNFG nodetype nodename [...]

REQID reqid : prodid vpdfield=xxx [...]

98 Application Programmer’s Guide

prodid
Identifies the type of product. The prodid variable can have one of the
following values:
IBM-HW IBM hardware
MIX-HW IBM or non-IBM hardware (not distinguished)
OEM-HW Non-IBM hardware
IBM-SW IBM software
MIX-SW IBM or non-IBM software (not distinguished)
OEM-SW Non-IBM software

vpdfield=xxx
Represents a combination of various fields and values that describe the type of
product of a particular node. The message reflects all the data returned from
the device. Vital product data is device dependent. Each device builds a
different combination of fields. NetView formats all of the data that the device
returns, even if the data contains blanks or zeros.

The following fields can be contained in DWO102I:

Field Value

M/T System type of the hardware product

MDL System model number of the hardware product

MFG Plant of manufacture of the hardware product

S/N Sequence number of the hardware product

EM/T System type of the emulated product

EMDL System number of the emulated product

COMPID Software serviceable component identifier

REL Software serviceable component release level

VER Software product common version identifier

RLS Software product common release identifier

MOD Software product common modification identifier

SPROD Software common product name

NODEID Software product customization identifier

PPN Software program product number

CSD Software product customization date in YY/DDD format

CST Software product customization time in HH:MM format

ECL Microcode EC level

HPROD Hardware product common name

VID Vendor identification

DCE Data
Beginning with NetView for z/OS V5R4, the DCE Data for Modems (Subvector
X'50') and DCE Data for DSUs/CSUs (Subvector X'50') functions are deprecated.

Link Configuration Data (Subvector X'52')
Beginning with NetView for z/OS V5R4, this function is deprecated.

Appendix C. Network Asset Management 99

|

|
|

|

|

Sense Data (Subvector X'7D')
Message DWO111I contains SNA sense data supplied by a node that cannot satisfy
a VPD request. The data is returned in subvector X'7D'.

The format of message DWO111I is:

Where:

reqid
Is the ID that correlates this reply to a specific request.

sensecode
Is the 8-character hexadecimal sense code of the node that cannot satisfy a
VPD request.

Attached Device Configuration Data (Subvector X'82')
Message DWO101I contains data about the configuration of a device attached to
the node that reports the VPD. The data is returned in subvector X'82'.

The format of message DWO101I is:

Where:

reqid
Is the ID that correlates this reply to a specific request.

vpdfield=xxx
Represents a combination of fields and values that describe the attached
device. The message reflects all the data returned from the device. Depending
on the device, different fields are used to build this portion of the message. All
the fields returned from the device are used, even the fields that contain blanks
or zeros.

The following fields can be contained in DWO101I:

Field Value

PORT Is the port number where this device is attached.

PWROS Is the power-on status of this device.

PWROL Specifies whether this device has been powered on since the
last time a solicitation for VPD was issued.

Product Set Attributes (Subvector X'84')
Message DWO105I transports additional attributes describing the product set. The
data is returned in subvector X'84'.

The format of message DWO105I is:

Where:

reqid
Is the ID that correlates this reply to a specific request.

REQID reqid : SNS sensecode

REQID reqid : vpdfield=xxx [...]

REQID reqid : vpdfield=xxx [...]

100 Application Programmer’s Guide

vpdfield=xxx
Represents a combination of fields and values that describe the attached
device.

The following fields can be contained in DWO105I:

Field Value

PHI From 1–50 characters in character set 640 identifying the physical
location of the product set.

LAN Six bytes identifying the LAN universally assigned address. The 6
bytes are unique across all LAN adapters whose addresses are
controlled by the Institute of Electrical and Electronics Engineers
(IEEE).

Additional Product Set Attributes (Subvector X'86')
Message DWO106I reports the user-defined data. The message text is dynamically
built from subvector X'86' that was embedded in a delivery RU from VTAM.

The format of message DWO106I is:

Where:

reqid
Is the ID that correlates this reply to a specific request.

vpdfield=xxx
Represents a combination of fields and values that describe the attached
device.

The following fields can be contained in DWO106I:

Field Value

LBL From 1–25 characters in character set 640 identifying the text of a label
for a product set attribute.

UDT Characters 1–118 contain the data for a product set attribute.

Note: The X'10' subfield of subvector X'86' contains the additional
product data with maximum length 224. The first 118 characters
are written to the UDT field and the last 106 characters are
truncated.

Network Asset Management Command Lists
You can use the sample command lists as they are shipped to perform basic vital
product data (VPD) collection. If the sample command lists do not suit your
particular network asset management requirements, you can modify the existing
command lists, or you can write your own.

Using the Sample Command Lists
The sample command lists assign a record type number to each VPD record logged
into an external file. The record type number is set in the common global variable
SMFVPD by using the CNMSTUSR or CxxSTGEN member. For information about
changing CNMSTYLE statements, see IBM Tivoli NetView for z/OS Installation:
Getting Started.

REQID reqid : vpdfield=xxx [...]

Appendix C. Network Asset Management 101

|
|
|

The sample command lists set the record type number to the default of 37 and
continue processing. Record type 37 is used for hardware monitor log records, and
in this case, for vital product data.

The following list shows the sample network asset management command lists:

VPDLOGC
Generates and logs start and end records when called by the VPDALL
command.

VPDPU
Collects and logs VPD from a specified PU (and optionally its ports) in
your domain.

VPDDCE
Collects and logs VPD from all of the DCEs existing in a direct path
between a specified NCP and PU in your domain.

VPDXDOM
Enables a focal point to collect VPD from devices attached to another
NetView program, when you use it in conjunction with the VPDLOGC,
VPDPU, and VPDDCE command lists and a NetView automation
definition. VPDXDOM sets the record type number of NetView soliciting
for VPD to that of the focal point NetView program. This ensures that all
of the collected VPD is logged with the same record type number under
the focal point NetView program.

Writing Command Lists
If you plan to write command lists to collect and log VPD:
1. Define the format of each type of log record you want to create.
2. Assign a record type number from 128–255 to each type of log record created.
3. Install an external logging facility if you want to log VPD into an external file.

After logging data into an external file, you can manipulate the data using tools
such as Service Level Reporter (SLR) or Information/Management for MVS.

Network Asset Management Record Formats
This section describes the format of the common prefix and the different
subrecords. Each record written by a sample command list through the NetView
external logging facility consist of a common prefix (header), followed by variable
data. The variable data is contained in one of the following subrecords:
v Start (subtype S)
v End (subtype E)
v PU hardware (subtype P)
v PU software (subtype F)
v DCE hardware (subtype M)
v Time-out (subtype T)
v User data (subtype U)
v Error (subtype W)

Each subrecord contains a collect identifier field. This field correlates the records
written during the same data collection. The last two digits of the collect identifier
indicate the method used to collect the data.

102 Application Programmer’s Guide

Common Record Prefix
Each record created by the sample command lists is preceded by a common record
prefix, or header, which contains identifying information about the record. Table 16
is a format of this common prefix.

Table 16. Format of Common Record Prefix

Record Offset Length in Bytes Description

000 2 Record length

002 2 Reserved

004 1 Reserved

005 1 Record number

006 4 DATE (00yydddf)

010 4 TIME (sec/100)

014 4 System ID

018 4 Subsystem ID (set to VPD)

022 2 Subsystem record number (set to 22)

Start Subrecords
Start subrecords (subtype S) contain information about the start of data collection.
Start subrecords are written by VPDLOGC, which is called by the VPDALL
command at the start of data collection.

Table 17. Format of Start Subrecords

Record Offset CMD Proc
Offset

Length in Bytes Description

024 001 1 Record subtype (S)

025 002 8 NetView program domain ID

033 010 12 Collect identifier
(mmddyyhhmm99)

045 022 8 Operator ID

053 030 8 Req (set to VPDALL)

061 038 3 Trailer (set to VPD)

End Subrecords
End subrecords (subtype E) contain information about the end of data collection.
End subrecords are written by VPDLOGC, which is called by the VPDALL
command at the end of data collection.

Table 18. Format of End Subrecords

Record Offset CMD Proc
Offset

Length in Bytes Description

024 001 1 Record subtype (E)

025 002 8 NetView program domain ID

033 010 12 Collect identifier
(mmddyyhhmm99)

045 022 8 Operator ID

053 030 12 End of collect (mmddyyhhmmss)

Appendix C. Network Asset Management 103

Table 18. Format of End Subrecords (continued)

Record Offset CMD Proc
Offset

Length in Bytes Description

065 042 8 Record counter 1

073 050 8 Number of calls to VPDPU 2

081 058 8 Reserved

089 066 8 Number of calls to VPDDCE 2

097 074 8 Reserved

105 082 3 Trailer (set to VPD)

Notes:

1. This field contains the number of records, generated since the START subrecord, that
can be written to an external logging facility. This field does not represent the number
of records that were successfully written to the external logging facility.

2. This field contains the total number of calls made to the VPDPU or VPDDCE command
list. It does not represent the number of successful completions of the command list.

PU Hardware Subrecords
PU hardware subrecords (subtype P) contain information about the hardware
characteristics of a PU. PU hardware subrecords are written by the VPDPU
command list.

Table 19. Format of PU Hardware Subrecords

Record Offset CMD Proc
Offset

Length in Bytes Description

024 001 1 Record subtype (P)

025 002 8 NetView program domain ID

033 010 12 Collect identifier
(mmddyyhhmm99)

045 022 5 System type

050 027 3 System model

053 030 3 Manufacturer ID

056 033 7 Sequence number

063 040 10 EC level

073 050 8 LU name

081 058 8 PU name

089 066 8 Link name

097 074 8 PU type 4 or 5 name

105 082 6 Attached port number

111 088 1 Current power on status

112 089 1 Power on status since last
solicitation

113 090 12 Universal LAN adapter address

125 102 8 Reserved

133 110 3 Trailer (set to VPD)

136 113 50 Physical location 1

104 Application Programmer’s Guide

Table 19. Format of PU Hardware Subrecords (continued)

Record Offset CMD Proc
Offset

Length in Bytes Description

Notes:

1. You can set this field.

PU Software Subrecords
PU software subrecords (subtype F) contain information about the software
characteristics of a PU. PU software subrecords are written by the VPDPU
command list.

Table 20. Format of PU Software Subrecords

Record Offset CMD Proc
Offset

Length in Bytes Description

024 001 1 Record subtype (F)

025 002 8 NetView program domain ID

033 010 12 Collect identifier
(mmddyyhhmm99)

045 022 9 Component ID

054 031 3 Release level

057 034 6 Customization date

063 040 5 Customization time

068 045 5 Reserved

073 050 8 LU name

081 058 8 PU name

089 066 8 Link name

097 074 8 PU type 4 or 5 name

105 082 3 Trailer (set to VPD)

DCE Hardware Subrecords
DCE hardware subrecords (subtype M) contain information about the hardware
characteristics of a DCE. DCE hardware subrecords are written by the VPDDCE
command list.

Table 21. Format of DCE Hardware Subrecords

Record Offset CMD Proc
Offset

Length in Bytes Description

024 001 1 Record subtype (M)

025 002 8 NetView program domain ID

033 010 12 Collect identifier
(mmddyyhhmm99)

045 022 5 System type

050 027 3 System model

053 030 7 Serial number

060 037 1 Card EC level

Appendix C. Network Asset Management 105

Table 21. Format of DCE Hardware Subrecords (continued)

Record Offset CMD Proc
Offset

Length in Bytes Description

061 038 1 Packaging EC level or micro code
EC level

062 039 11 Reserved

073 050 8 Reserved

081 058 8 PU name

089 066 8 Link name

097 074 8 PU type 4 or 5 name

105 082 1 Total link segment level

106 083 1 Current link segment level

107 084 2 DCE address

109 086 1 DCE position 1

110 087 3 Trailer (set to VPD)

113 090 20 Link station attribute 2

133 110 Varied DCE features 2

Notes:

1. This field contains a character that identifies the sequence in which the DCEs are
connected. The possible values are 1, 2, 3, and 4, with 1 being the DCE closest to the
NCP that solicited the VPD.

2. These fields can be defined by the user.

Time-Out Subrecords
Time-out subrecords (subtype T) contain information about a VPD request that
timed out before it was completed. Timeout subrecords are written by the VPDPU
or VPDDCE command lists when the you specify the ERROR option.

Table 22. Format of Time-Out Subrecords

Record Offset CMD Proc
Offset

Length in Bytes Description

024 001 1 Record subtype (T)

025 002 8 NetView program domain ID

033 010 12 Collect identifier
(mmddyyhhmm99)

045 022 8 Operator ID

053 030 8 Request specified

061 038 8 Node name 1

069 046 8 Node name 2

077 054 3 Trailer (set to VPD)

User Data Subrecords
User data subrecords (subtype U) contain additional product set data for a
specified PU. The user data subrecords are written by the VPDPU command list.

106 Application Programmer’s Guide

Table 23. Format of User Data Subrecords

Record Offset CMD Proc
Offset

Length in Bytes Description

024 001 1 Record subtype (U)

025 002 8 NetView program domain ID

033 010 12 Collect identifier
(mmddyyhhmm99)

045 022 25 User’s label

070 047 118 User’s data (see note)

188 165 3 Trailer (set to VPD)

Note: See message “DWO106I” on page 101 for more information.

Error Subrecords
Error subrecords (subtype W) contain information about a VPD request that failed.
Error subrecords are written by the VPDPU or VPDDCE command lists when you
specify the ERROR option.

Table 24. Format of Error Subrecords

Record Offset CMD Proc
Offset

Length in Bytes Description

024 001 1 Record subtype (W)

025 002 8 NetView program domain ID

033 010 12 Collect identifier
(mmddyyhhmm99)

045 022 8 Operator ID

053 030 8 Request specified

061 038 8 Node name 1

069 046 8 Node name 2

077 054 8 Error message number

085 062 3 Trailer (set to VPD)

Appendix C. Network Asset Management 107

108 Application Programmer’s Guide

Appendix D. External Log Record Formats

This appendix helps you write NetView application programs. It contains
general-use programming interface and associated reference information. It also
provides the various log record formats written to external logs. These external
logs can be SMF logs, or user-written logs.

External Log Record Type 37
The hardware monitor writes record type 37, subtype 4 records to the external log.
Each record is made up of data sections preceded by an external log record header
and a data descriptor section. The BNJTBRF macro maps the hardware monitor
external log record.

See “Network Asset Management Record Formats” on page 102 describing VPD
that can be written as external log record type 37 (subtype 22).

Note: In the following tables, a type of BinCD means binary coded decimal, which
is a numeric value coded in binary format.

Table 25. External Log Record Header Format for the Hardware Monitor

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

000 000 2 BRFRLEN Length of record including this
header

BinCD

002 002 2 BRFRSEG Segment descriptor BinCD

004 004 1 BRFRFLG System indicator Hex

005 005 1 BRFRRTY Record type [37 (X'25')] BinCD

006 006 4 BRFRTME Time since midnight, in
hundredths of a second, record
was moved into SMF buffer

Binary

010 00A 4 BRFRDTE Date when the record was
moved into the SMF buffer, in
the form 00yydddF or 0cyydddF
(where c is 0 for 19xx and 1 for
20xx, yy is the current year
(0–99), ddd is the current day
(1–366), and F is the sign)

Packed

014 00E 4 BRFRSID System ID Char

018 012 4 BRFRWID Subsystem ID (set to 'NETV') Char

022 016 2 BRFRSUBT Record subtype (set to decimal
4)

BinCD

Table 26. Hardware Monitor Data Descriptor Format

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

000 000 4 BRFPRODI Displacement from start of
external log header to section

BinCD

004 004 2 BRFPROLN Length of product section BinCD

© Copyright IBM Corp. 1997, 2009 109

Table 26. Hardware Monitor Data Descriptor Format (continued)

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

006 006 2 BRFPRONO Number of product sections (0
or 1)

BinCD

008 008 4 BRFALLDI Displacement of common
report from start of SMF
header to section

BinCD

012 00C 2 BRFALLLN Length of common section BinCD

014 00E 2 BRFALLNO Number of common sections
(0 or 1)

BinCD

016 010 4 BRFEVTDI Displacement of event report
from start of SMF header to
section

BinCD

020 014 2 BRFEVTLN Length of event section Num

022 016 2 BRFEVTNO Number of event sections (0 or
1)

BinCD

024 018 4 BRFSTADI Displacement of statistical
report from start of SMF
header to section

BinCD

028 01C 2 BRFSTALN Length of statistical section BinCD

030 01E 2 BRFSTANO Number of statistical sections
(0 or 1)

BinCD

032 020 4 BRFMODDI Displacement of LPDA-1
modem report from start of
SMF header to section
Note: Beginning with NetView
for z/OS V5R4, this function is
deprecated.

BinCD

036 024 2 BRFMODLN Length of LPDA-1 modem
section
Note: Beginning with NetView
for z/OS V5R4, this function is
deprecated.

BinCD

038 026 2 BRFMODNO Number of LPDA-1 modem
sections (0 or 1)
Note: Beginning with NetView
for z/OS V5R4, this function is
deprecated.

BinCD

040 028 4 BRFLPDDI Displacement of LPDA-2
report from start of SMF
header
Note: Beginning with NetView
for z/OS V5R4, this function is
deprecated.

BinCD

044 02C 2 BRFLPDLN Length of LPDA-2 section
Note: Beginning with NetView
for z/OS V5R4, this function is
deprecated.

BinCD

046 02E 2 BRFLPDNO Number of LPDA-2 sections
Note: Beginning with NetView
for z/OS V5R4, this function is
deprecated.

BinCD

110 Application Programmer’s Guide

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

Table 26. Hardware Monitor Data Descriptor Format (continued)

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

048 030 4 BRFLANDI Displacement of local area
network report from start of
SMF record

BinCD

052 034 2 BRFLANLN Length of local area network
section

BinCD

054 036 2 BRFLANNO Number of local area network
sections

BinCD

056 038 4 BRFGENDI Displacement of generic event
report

BinCD

060 03C 2 BRFGENLN Length of generic event section BinCD

062 03E 2 BRFGENNO Number of generic event
sections (0 or 1)

BinCD

064 040 4 BRFETHDI Displacement of ETHERNET
LAN DATA report

BinCD

068 044 2 BRFETHLN Length of ETHERNET LAN
DATA section

BinCD

070 046 2 BRFETHNO Number of ETHERNET LAN
DATA sections

BinCD

072 048 4 BRFSELDI Displacement of self-defined
text message report

BinCD

076 04C 2 BRFSELLN Length of self-defined text
message section

BinCD

078 04E 2 BRFSELNO Number of self-defined text
message sections

BinCD

080 050 4 BRFDETTI Displacement of detailed data
network subfield report

BinCD

084 054 2 BRFDETLN Length of detailed data
network subfield section

BinCD

086 056 2 BRFDETNO Number of detailed data
network subfield sections

BinCD

Table 27. Product Report Format

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

000 000 2 BRFSUBTY Record subtype (set to 4) BinCD

002 002 2 BRFRELVL NetView program release level
(set to 32)

Char

004 004 4 BRFPRONM Product name (set to 'NETV') Char

008 008 8 BRFTIMST Time stamp in form:
00YYDDDFHHMMSS0S

Packed

Table 28. Alert Report Format

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

000 000 8 BRFDOMNM Domain name Char

Appendix D. External Log Record Formats 111

Table 28. Alert Report Format (continued)

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

008 008 8 BRFFLRNM Failing resource name Char

016 010 4 BRFFLRTY Failing resource type Char

020 014 8 BRFHINM(1) Resource level name 1 Char

028 01C 4 BRFHITY(1) Resource level type 1 Char

032 020 8 BRFHINM(2) Resource level name 2 Char

040 028 4 BRFHITY(2) Resource level type 2 Char

044 02C 8 BRFHINM(3) Resource level name 3 Char

052 034 4 BRFHITY(3) Resource level type 3 Char

056 038 8 BRFHINM(4) Resource level name 4 Char

064 040 4 BRFHITY(4) Resource level type 4 Char

068 044 8 BRFHINM(5) Resource level name 5 Char

076 04C 4 BRFHITY(5) Resource level type 5 Char

080 050 1 BRFCPL Complex link indicator (0=no
1=yes)

Hex

081 051 1 BRFALT Alert indicator (0=no 1=yes) Hex

Table 29. Generic Event Report Format

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

000 000 1 BRFETYPE Event type Char

001 001 9 BRFPROID Product ID Char

010 00A 4 BRFALTID Alert ID number Char

014 00E 40 BRFDESC Event description Char

054 036 40 BRFCAUS1 First probable cause Char

094 05E 8 BRFCDPTS Probable-cause code points 2
to 5

Hex

102 066 2 BRFFLAGS Generic flags Char

104 068 2 BRFEDCP1 Event description code point Hex

106 06A 2 BRFPCCP1 First probable cause code point Hex

Table 30. Event Report Format

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

000 000 1 BRFALRTT Event type for event records Hex

001 001 1 BRFGENCA General cause for event
records

Hex

002 002 1 BRFSPECA Specific cause for event records Hex

003 003 2 BRFBLKID Block ID Hex

005 005 1 BRFUACD Action code Hex

006 006 8 BRFUAQL1 Detail qualifier 1 Char

014 00E 8 BRFUAQL2 Detail qualifier 2 Char

112 Application Programmer’s Guide

Table 30. Event Report Format (continued)

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

022 016 8 BRFUAQL3 Detail qualifier 3 Char

030 01E 48 BRF48TXT Error description: probable
cause

Char

078 04E 2 BRFDBKID Detail block ID Hex

080 050 1 BRFDUACD Detail action code Hex

081 051 1 BRFNMJTY NMVT type:
X'00' NMVT 0000
X'01' NMVT 0001
X'02' NMVT 0025
X'0F' Miscellaneous NMVT
X'FF' Non-NMVT

Hex

Table 31. Statistical Report Format

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

000 000 4 BRFTRFFC Total traffic BinCD

004 004 2 BRFTEMPS Total temporary errors BinCD

Table 32. Local Area Network Report

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

000 000 6 BRFLMADR Local mac address Hex

006 006 6 BRFRMADR Remote mac address Hex

012 00C 18 BRFROUTI Routing information Hex

030 01E 6 BRFUPADR Mac address of upstream
member

Hex

036 024 6 BRFDNADR Mac address of downstream
member

Hex

042 02A 6 BRFSMADR Single mac address Hex

048 030 16 BRFSMNAM Single mac name Char

064 040 2 BRFRIBID Ring or BUS ID Hex

Table 33. ETHERNET LAN Data Report Format

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

000 000 6 BRFLMADE Local mac address Hex

006 006 6 BRFRMADE Not used Hex

012 00C 18 BRFROUTE Not used Hex

030 01E 6 BRFUPADE Not used Hex

036 024 6 BRFDNADE Not used Hex

042 02A 6 BRFSMADE Not used Hex

048 030 16 BRFSMNAE Not used Char

064 040 1 BRFMCTPE Mac type Hex

Appendix D. External Log Record Formats 113

Table 34. Self-defining Text Message Report Format

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

000 000 275 BRFTEXT Self-defining text message Char

Note: If the major vector contains multiple X'31' self-defining text subvectors, this field
contains only the self-defining text from the first X'31' subvector.

Table 35. Detailed Data Network Alert Report Format

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

000 000 002 BRFDENUM Number of detailed data
network subfields

BinCD

002 002 253 BRFDEDAT Detailed data network
subfields

Char

Notes:

1. Only detailed data subfields not associated with qualified message data are supported.

2. The BRFDEDAT field can contain more than one subfield with each subfield preceded
by a field containing the length of the subfield (see Table 36 for the structure of the
BRFDEDAT field).

Table 36. BFRDEDAT Mapping

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

000 000 2 BRFDATLN Number of bytes of data
contain in BRFDATTX

BinCD

002 002 n BRFDATTX Detailed data network
subfield, where n is the value
stored in BRFDATLN (see
notes)

Char

Notes:

1. This structure is repeated z times in BRFDEDAT, where z is the value stored in
BRFDENUM (see Table 35).

2. The length of the detailed data network subfields can vary; the length value is stored in
the BRFDATLN field associated with each subfield.

External Log Record Type 38
This section describes the content and format of external log record type 38 (X'26').
Three subtypes are documented:
Subtype 1 Command authorization table
Subtype 2 Task resource utilization data
Subtype 3 Span authorization table

NetView Command Authorization Table External Log Record
The command authorization table external log record type 38, subtype 1 contains a
common header, a specific data descriptor section, and other information sections
that are defined by the data descriptor section:

114 Application Programmer’s Guide

For format of... See...

Common header Table 37 on page 116

Common product section Table 38 on page 116

Data descriptor section Table 39 on page 116

General section Table 40 on page 117

Data section Table 41 on page 118

Subtype 1 external log record type 38 is generated by auditing the NetView
command authorization table, which is controlled globally by the NetView
DEFAULTS CATAUDIT command or specifically by using the AUDIT keyword on
the PERMIT and EXEMPT statements in the NetView command authorization
table. Refer to the IBM Tivoli NetView for z/OS Administration Reference for a
description of the PERMIT and EXEMPT statements and the NetView online help
for the syntax of the DEFAULTS command.

NetView Task Resource-Utilization-Data External Log Record
The task resource-utilization-data external log record type 38, subtype 2 contains a
common header, a specific data descriptor section, and other information sections
defined by the data descriptor section:

For format of... See...

Common header Table 37 on page 116

Common product section Table 38 on page 116

Data descriptor section Table 42 on page 119

General section Table 43 on page 119

Data section Table 44 on page 121

NetView Span Authorization Table External Log Record
The span authorization table external log record type 38, subtype 3 contains a
common header, a specific data descriptor section, and other information sections
defined by the data descriptor section:

For format of... See...

Common header Table 37 on page 116

Common product section Table 38 on page 116

Data descriptor section Table 45 on page 125

General section Table 46 on page 126

Access section Table 47 on page 126

Resource/View name section Table 48 on page 127

Operator section Table 49 on page 128

Matching information section Table 50 on page 128

Record Header and Section Formats
The following common record header and product information sections make up
an external log record type 38.

Appendix D. External Log Record Formats 115

Table 37. Format of Record Type 38 Header

Offset
Dec.

Offset
Hex.

Length
in Bytes Name Description Type

000 000 2 S38LENG Length of record Binary

002 002 2 S38SEGD SMF segment descriptor Binary

004 004 1 S38SYSI System indicator Binary

005 005 1 S38RECT Record type [38 (X'26')] Binary

006 006 4 S38TIME Time since midnight, in
hundredths of a second, record
was moved into SMF buffer

Binary

010 00A 4 S38DATE Date when the record was
moved into the SMF buffer, in
the form 00yydddF or 0cyydddF
(where c is 0 for 19xx and 1 for
20xx, yy is the current year
(0-99), ddd is the current day
(1-336), and F is the sign)

Packed

014 00E 4 S38SYID System identification Char

018 012 4 S38SUBS Subsystem identification:
"NETV"

Char

022 016 2 S38SUBT Record subtype:
X'0001' Command

authorization table
record

X'0002' Task resource
utilization data

X'0003' Dynamic span table
record

Binary

024 018 — — Start of variable length data —

Table 38. Format of Common Product Section

Offset
Dec.

Offset
Hex.

Length
in Bytes Name Description Type

000 000 2 S38CVER Record version number Binary

002 002 4 S38CPNM Product name (NETV) Char

006 006 2 S38CPVR Product version and release, in
the format vr, where v is
version and r is release.

Char

Specific Subtype 1 Section Formats
The following tables contain specific command authorization table external log
record (subtype 1) formats.

Table 39. Format of Subtype 1 Data Descriptor Section

Offset
Dec.

Offset
Hex.

Length
in Bytes Name Description Type

000 000 2 S38TRNUM Total number of triplets Binary

002 002 2 — Reserved Binary

004 004 4 S38PROFF Offset to Product section Binary

008 008 2 S38PRLEN Length of Product section Binary

116 Application Programmer’s Guide

Table 39. Format of Subtype 1 Data Descriptor Section (continued)

Offset
Dec.

Offset
Hex.

Length
in Bytes Name Description Type

010 00A 2 S38PRNUM Number of Product sections Binary

012 00C 4 S38GOFF Offset to General section Binary

016 010 2 S38GLEN Length of General section Binary

018 012 2 S38GNUM Number of General sections Binary

020 014 4 S38COFF Offset to Command section Binary

024 018 2 S38CLEN Length of Command section Binary

026 01A 2 S38CNUM Number of Command sections Binary

028 01C 4 S38KOFF Offset to Keyword section Binary

032 020 2 S38KLEN Length of Keyword section Binary

034 022 2 S38KNUM Number of Keyword sections Binary

036 024 4 S38VOFF Offset to Value section Binary

040 028 2 S38VLEN Length of Value section Binary

042 02A 2 S38VNUM Number of Value sections Binary

044 02C 4 S38IOFF Offset to command identifier Binary

048 030 2 S38ILEN Length of command identifier Binary

050 032 2 S38INUM Number of command identifier
sections

Binary

052 034 4 S38UOFF Offset to User ID section Binary

056 038 2 S38ULEN Length of User ID section Binary

058 03A 2 S38UNUM Number of User ID sections Binary

060 03C 4 S38CAOFF Offset to Caller section Binary

064 040 2 S38CALEN Length of Caller section Binary

066 042 2 S38CANUM Number of Caller sections Binary

Table 40. Format of Subtype 1 General Section

Offset
Dec.

Offset
Hex.

Length
in Bytes Name Description Type

000 000 8 S38CTNM Name of the NetView
command authorization table

Char

008 008 8 S38CDOM Domain where the NetView
command authorization table
is loaded

Char

016 010 17 S38CTTM Time that this NetView
command authorization table
was loaded, in the
format:MM/DD/YY HH:MM:SS

Char

033 021 3 S38CHPA If the authorization decision
was PASS, this field describes
how the PASS decision was
authorized:
PER by PERMIT statement
EXE by EXEMPT statement

Char

036 024 4 S38CDEC Authority decision, "PASS" or
"FAIL"

Char

Appendix D. External Log Record Formats 117

Table 40. Format of Subtype 1 General Section (continued)

Offset
Dec.

Offset
Hex.

Length
in Bytes Name Description Type

040 028 8 S38CMTY Match type:

SPECIFIC The
command is
explicitly
protected by
a command
identifier that
exactly
matches the
command
being
checked.

GENERIC The
command is
protected by
a command
identifier that
contains a
generic
character in
one or more
command,
keyword, or
value field.

Char

Table 41. Format of Subtype 1 Data Section

Located By Name Type Description

S38COFF S38CCOM Char The command that is being protected by a
command identifier

S38KOFF S38CKEY Char The keyword that is being protected by a
command identifier

S38VOFF S38CVAL Char The value that is being protected by a
command identifier

S38IOFF S38CCI Char The command identifier that caused this
authorization check to fail or pass. The
format is: netid.luname.cmd.keyword.value

S38UOFF S38CUSER Char The user ID that is being checked

S38CAOFF S38CCALR Char The user ID of the CALLER of the table
authority check (see notes)

Notes:

1. This section is the variable length data that follows the S38CMTY field of the general
section for the command authorization table (subtype 1) external log record type 38.

2. S38CCALR is present only when the CALLER differs from the user ID that is in
S38CUSER. The CALLER can differ from S38CUSER when AUTHCHK=SOURCEID
checking is in effect.

Specific Subtype 2 Section Formats
The following tables contain specific task resource-utilization-data external log
record (subtype 2) formats.

118 Application Programmer’s Guide

Note: For additional help understanding this data, refer to the CNME1101
NetView REXX sample.

Table 42. Format of Subtype 2 Data Descriptor Section

Offset
Dec.

Offset
Hex.

Length
in Bytes Name Description Type

0000 0000 2 S38TRNUM2 Total number of triplets
(X'0003')

Binary

0002 0002 2 — Reserved Binary

0004 0004 4 S38PROFF2 Offset to product section Binary

0008 0008 2 S38PRLEN2 Length of product section
(X'0008')

Binary

0010 000A 2 S38PRNUM2 Number of product sections
(X'0001')

Binary

0012 000C 4 S38GOFF2 Offset to general section Binary

0016 0010 2 S38GLEN2 Length of general section
(X'0034')

Binary

0018 0012 2 S38GNUM2 Number of general sections
(X'0001')

Binary

0020 0014 4 S38DOFF2 Offset to data section Binary

0024 0018 2 S38DLEN2 Length of data section (X'0060') Binary

0026 001A 2 S38DNUM2 Number of product sections
(X'0001')

Binary

Table 43. Format of Subtype 2 General Section

Offset
Dec.

Offset
Hex.

Length
in Bytes Name Description Type

0000 0000 2 S38TUrver Record version number Binary

Appendix D. External Log Record Formats 119

Table 43. Format of Subtype 2 General Section (continued)

Offset
Dec.

Offset
Hex.

Length
in Bytes Name Description Type

0002 0002 2 S38TUevent One of the following event
codes:
1 LOGOFF or task

ended abnormally
2 Session ended, task

ended abnormally,
and reinstated

3 Task stopped by
STOP UNCOND

4 Task statistics at
CLOSE NORMAL
checkpoint

5 Task statistics at
CLOSE STOP
checkpoint

6 Task statistics at
CLOSE IMMED
checkpoint

7 Task statistics at
CLOSE ABEND
checkpoint

8 Task statistics at
LOGTSTAT
checkpoint

9 Task start events
10 Task statistics at

interval

Binary

0004 0004 8 S38TUopid Owning or billable operator ID

The task name or operator ID
(TVBOPID).

Char

0012 000C 8 S38TUluname LU name

The task name or terminal
name connected to the task
(TVBLUNAM).

Char

0020 0014 8 S38TUdomain NetView domain name

The NetView domain name in
which the task ran.

Char

0028 001C 8 S38TUunique NetView domain session
correlation

Each NetView program has a
different value for this field,
and each time the NetView
program is started, this value
is changed. Records with the
same value came from the
same NetView program and
ran in the same address space.

Binary

120 Application Programmer’s Guide

Table 43. Format of Subtype 2 General Section (continued)

Offset
Dec.

Offset
Hex.

Length
in Bytes Name Description Type

0036 0024 8 S38TUsessid NetView subtask session
correlation

Each task has a different value
for this field, and each time
the task starts, this value is
changed. Records with the
same value came from the
same task and ran in the same
“session.” Recovery of an
abnormal end is treated as the
same session.

Binary

0044 002C 8 S38TUstck Current STCK value for data

The internal hardware clock at
the time the data was
recorded. (The store clock was
shifted 12 bits to the right.)

Binary

Table 44. Format of Subtype 2 Data Section

Offset
Dec.

Offset
Hex.

Length
in Bytes Name Description Type

0000 0000 2 S38TUdataVer Record version number Binary

0002 0002 2 S38TUmaxCPU Maximum processor
percentage (hundredths of
percent)

The maximum measured
processor during a 10 second
interval since the task began,
or since the last LOGTSTAT
RESETMAX or LOGTSTAT
INTERVAL command.

Binary

0004 0004 4 S38TUsessSec Task session time in seconds Binary

0008 0008 4 S38TUsessFrac Task time fraction of one
second in microseconds

The elapsed time the task has
run in seconds plus
microseconds. The
microseconds field provides
accurate timing for short
intervals.
Note: These two fields are not
a double-word pair containing
microseconds. Refer to sample
CNME1101 for algorithms in
REXX for timing arithmetic.

Binary

0012 000C 4 S38TUcpuSec Processor units used in
seconds

Binary

Appendix D. External Log Record Formats 121

Table 44. Format of Subtype 2 Data Section (continued)

Offset
Dec.

Offset
Hex.

Length
in Bytes Name Description Type

0016 0010 4 S38TUcpufrac Processor time fraction of one
second in microseconds

The amount of processor time
charged to this task by MVS.
The microseconds field
provides accurate timing for
short intervals.
Note: These two fields are not
a double-word pair containing
microseconds. See sample
CNME1101 for algorithms in
REXX for timing arithmetic.

Binary

0020 0014 4 S38TUpenSec Penalty time in seconds Binary

0024 0018 4 S38TUpenFrac Penalty time fraction of one
second in microseconds

The number of seconds that
this task has waited because of
MAXMQIN, AVLSLOW,
SLOWSTG, MAXCPU,
MAXMQOUT, or MAXIO
penalties. The microseconds
field provides accurate timing
for short intervals.
Note: These two fields are not
a double-word pair containing
microseconds. See sample
CNME1101 for algorithms in
REXX for timing arithmetic.

Binary

0028 001C 2 S38TUavgCPU Average processor utilization
in hundredths of percent

The percentage of a processor
this task has used. The ratio of
Used CPU to Session Seconds.

Binary

0030 001E 2 S38TUpnPct Average penalty imposed in
hundredths of percent

The percentage of elapsed time
that this task has waited for
penalties. The ratio of Penalty
Seconds to Session Seconds.

Binary

0032 0020 4 S38TUmaxStg Maximum storage used

The largest usage of storage
for this task since the task was
started or since the last
LOGTSTAT RESETMAX or
LOGTSTAT INTERVAL
command.

Binary

122 Application Programmer’s Guide

Table 44. Format of Subtype 2 Data Section (continued)

Offset
Dec.

Offset
Hex.

Length
in Bytes Name Description Type

0036 0024 4 S38TUgetRate Total DSIGET usage rate in KB
per minute

The average rate (for the life of
the task) at which storage was
obtained by DSIGET, in KB per
minute.

Binary

0040 0028 4 S38TUfreRate Total DSIFRE usage rate in KB
per minute

The average rate (for the life of
the task) at which storage was
released by DSIFRE, in KB per
minute.

Binary

0044 002C 4 S38TU24gRate A 24-bit DSIGET usage rate in
KB per minute

The average rate (for the life of
the task) at which storage was
obtained by DSIGET, in KB per
minute (24-bit storage only).

Binary

0048 0030 4 S38TU24fRate A 24-bit DSIFRE usage rate in
KB per minute

The average rate (for the life of
the task) at which storage was
released by DSIFRE, in KB per
minute (24-bit storage only).

Binary

0052 0034 4 S38TUmxmiRate Maximum inbound DSIMQS
rate in KB per minute

The maximum rate, over a
one-minute period, at which
messages were queued to this
task by DSIMQS, in KB per
minute. This is the maximum
rate since the task started, or
since the last LOGTSTAT
RESETMAX or LOGTSTAT
INTERVAL command.

Binary

0056 0038 4 S38TUmqiRate Average inbound DSIMQS rate
in KB per minute

The rate, over the life of the
task, at which messages were
queued to this task by
DSIMQS, in KB per minute.

Binary

Appendix D. External Log Record Formats 123

Table 44. Format of Subtype 2 Data Section (continued)

Offset
Dec.

Offset
Hex.

Length
in Bytes Name Description Type

0060 003C 4 S38TUmxmoRate Maximum outbound DSIMQS
rate

The maximum rate (for a 1
minute period) at which
messages were sent by this
task by DSIMQS, in KB per
minute. This is the maximum
rate since the task started, or
since the last LOGTSTAT
RESETMAX or LOGTSTAT
INTERVAL command.

Binary

0064 0040 4 S38TUmqoRate Average outbound DSIMQS
rate

The rate, over the life of the
task, at which messages were
sent by this task by DSIMQS,
in KB per minute.

Binary

0068 0044 4 S38TUmqiTot Number of inbound DSIMQS
messages

The rate, over the life of the
task, at which messages were
sent to this task by DSIMQS,
in KB per minute.

Binary

0072 0048 4 S38TUmqoTot Number of outbound DSIMQS
messages

The number of messages sent
by this task over the life of the
session.

Binary

0076 004C 4 S38TUioTot Number of DASD I/Os

The total number of I/Os done
by NetView services on this
task for the life of this task.

Binary

0080 0050 4 S38TUmxiorate Maximum I/O rate (I/Os per
minute)

The maximum rate of I/Os per
minute in a 1 minute interval
since the task was started or
since the last LOGTSTAT
RESETMAX or LOGTSTAT
INTERVAL command.

Binary

0084 0054 4 S38TUioRate Average I/O rate (I/Os per
minute)

The average rate of I/Os per
minute for the life of the task.

Binary

0088 0058 4 S38TUmqiPNs Penalties caused by task (bytes
per second)

Binary

124 Application Programmer’s Guide

Table 44. Format of Subtype 2 Data Section (continued)

Offset
Dec.

Offset
Hex.

Length
in Bytes Name Description Type

0092 005C 4 S38TUmqiPNm Penalties caused by the task,
fraction of 1 second (bytes per
microsecond)

The total number of penalty
seconds that this task caused
other tasks to wait because of
MAXMQIN, SLOWSTG, or
AVLSLOW limit being
exceeded for this task. A
penalty time is served when a
DSIMQS from another task is
sent to the task that is over
any of these limits. The
microseconds field provides
accurate timing for short
intervals.
Note: These two fields are not
a double-word pair containing
microseconds. See sample
CNME1101 for algorithms in
REXX for timing arithmetic.

Binary

Specific Subtype 3 Section Formats
The following tables contain specific span authorization table external log record
(subtype 3) formats.

Table 45. Format of Subtype 3 Data Descriptor Section

Offset
Dec.

Offset
Hex.

Length
in
Bytes Description Type

0000 0000 2 Total number of triplets (X'0006') Binary

0002 0002 2 Reserved

0004 0004 4 Offset to product section Binary

0008 0008 2 Length of product section (X'0008') Binary

0010 000A 2 Number of product sections (X'0001') Binary

0012 000C 4 Offset to general section Binary

0016 0010 2 Length of general section (X'0022') Binary

0018 0012 2 Number of general sections (X'0001') Binary

0020 0014 4 Offset to access section Binary

0024 0018 2 Length of access section (X'0014') Binary

0026 001A 2 Number of access sections (X'0001') Binary

0028 001C 4 Offset to resource/view name section Binary

0032 0020 2 Length of resource/view name section Binary

0034 0022 2 Number of resource/view name sections (X'0001') Binary

0036 0024 4 Offset to operator section Binary

0040 0028 2 Length of operator section Binary

0042 002A 2 Number of operator sections (X'0001') Binary

Appendix D. External Log Record Formats 125

Table 45. Format of Subtype 3 Data Descriptor Section (continued)

Offset
Dec.

Offset
Hex.

Length
in
Bytes Description Type

0044 002C 4 Offset to matching information section Binary

0048 0030 2 Length of matching information section Binary

0050 0032 2 Number of matching information sections (X'0001') Binary

Table 46. Format of Subtype 3 General Section

Offset
Dec.

Offset
Hex.

Length
in
Bytes Description Type

0000 0000 8 Span table name Char

0008 0008 8 NetView domain name where the span table is
loaded

Char

0016 0010 17 Date/time when this span table is loaded in
MM/DD/YY HH:MM:SS format

Char

0033 0021 1 Reserved

Table 47. Format of Subtype 3 Access Section

Offset
Dec.

Offset
Hex.

Length
in
Bytes Description Type

0000 0000 4 Access decision PASS or FAIL Char

0004 0004 4 Request origin:
CMD Request from commands
VIEW Request from NetView management

console views

Char

0008 0008 4 Type of name:
RESC Resource name
VIEW NetView management console view name

Char

126 Application Programmer’s Guide

Table 47. Format of Subtype 3 Access Section (continued)

Offset
Dec.

Offset
Hex.

Length
in
Bytes Description Type

0012 000C 8 Reason for PASS or FAIL:
NOACTIVE Operator has no active span
NO MATCH No match found
RESCSTOP Resource has been stopped
GEN NAME For CTL=GENERAL, name

defined generically to another
span

DEF NAME For CTL=GENERAL, name
defined specifically to another
span

RDMQFAIL RODM query failed
RDMNONAM No name defined to RODM

object
INVALLEN For a VIEW request, the resource

or view name has a zero length
GLOB MAT Operator has CTL=GLOBAL
GLOBVTAM Operator has CTL=GLOBAL and

the command entered is a VTAM
command

SPEC MAT Name matches a specifically
defined name

GENR MAT Name matches a generically
defined name

GLSA MAT Name matches a leading single
asterisk name

GLDA MAT Name matches a leading double
asterisk name

NMNOTDEF For CTL=GENERAL (PASS),
name not defined to NetView

NOSPNDEF For CTL=SPECIFIC (FAIL) and
CTL=GENERAL (PASS), no span
definition in use

DBCSNAME No specific match found for a
DBCS name; no generic match
done for a DBCS name

Table 48. Format of Subtype 3 Resource/View Name Section

Offset
Dec.

Offset
Hex.

Length
in
Bytes Description Type

0000 0000 2 Length of the resource or view name that follows;
can be 0

Binary

0002 0002 If the length is nonzero, the resource or view name.
If the operator has CTL=GLOBAL and reason for
matching is GLOBVTAM, this field can have a
group of resource names, separated by commas.

Char

Appendix D. External Log Record Formats 127

Table 49. Format of Subtype 3 Operator Section

Offset
Dec.

Offset
Hex.

Length
in
Bytes Description Type

0000 0000 8 Operator ID, padded with blanks; an operator ID
of *BYPASS* indicates the VTAM command is
issued from a system console where no logon has
been performed.

Char

0008 0008 4 Operator CTL setting:
GLOB Global
SPEC Specific
GENL General

Char

0012 000C 2 Number of active spans that the operator has; can
be 0

Binary

0014 000E If the number of active spans is nonzero, the
operator’s active spans; each span is 8-bytes long
padded with blanks

Binary

Table 50. Format of Subtype 3 Matching Section

Offset
Dec.

Offset
Hex.

Length
in
Bytes Description Type

0000 0000 4 Reserved for NetView internal use Char

0004 0004 8 Span name in which the match is found;
GLOBAL means the operator has CTL=GLOBAL;
blanks indicate no match was found

Char

0012 000C 2 Length of the resource or view name that matches;
0 indicates failure for CTL=SPECIFIC

Binary

0014 000E If the length is nonzero, the resource or view name
that was matched

Char

External Log Record Type 39
The session monitor writes log record type 39 to an external log under the
following conditions:
v When an operator or command list issues a RECORD command with the

STRGDATA parameter, the NetView program writes a counter record type 39
(X'27') to the external log.

v When the network accounting and availability measurement function is active, it
writes an external log record type 39 (X'27') when a session is started, a session
is ended, or a RECORD command with the SESSTATS parameter is issued.

v When the response time data function is active, it writes an external log record
type 39 (X'27') when you issue the COLLECT command with the LOG
parameter, or at session end for an LU attached to a PU with the RTM feature.

Each record is made up of data sections preceded by an external log record header
and a data descriptor section.

The AAUTLOGR macro maps the session monitor external log record.

128 Application Programmer’s Guide

Record Subtypes
The session monitor writes one of the following type 39 (X'27') records to the
external log:
v RTM collection record
v Session end record
v Session start record
v Accounting and availability data collection record
v Combined session start-end record
v BIND failure record
v INIT failure record
v Storage and event counters

Each record is divided into sections. The functions described in the following
sections are shown in more detail in “Record Section Formats” on page 131.

RTM Collection Record (Subtype X'0001')
With the response time measurement function active, the NetView program writes
an RTM collection record to the external log. This happens whenever an operator
or a command list issues a COLLECT command with the LOG parameter. The
RTM collection record has 5 data sections:
v Product ID section
v Session configuration data
v Session route data
v Session response time data
v Advanced Peer-to-Peer Networking route data, if this is an Advanced

Peer-to-Peer Networking session

Session End Record (Subtype X'0002')
When the session monitor network accounting and availability measurement
function is active, the NetView program writes a session end record to the external
log when a session ends. The session end record has 6 data sections:
v Product ID section
v Session configuration data
v Session route data
v Session response time data
v Accounting and availability data
v Advanced Peer-to-Peer Networking route data, if this is an Advanced

Peer-to-Peer Networking session

The session response time data section is provided only if response time
monitoring is active.

Session Start Record (Subtype X'0003')
When the session monitor network accounting and availability measurement
function is active, the NetView program writes a session start record to the
external log when a new session starts. The session start record has 5 data sections:
v Product ID section
v Session configuration data
v Session route data
v Accounting and availability data
v Advanced Peer-to-Peer Networking route data, if this is an Advanced

Peer-to-Peer Networking session

Appendix D. External Log Record Formats 129

Accounting and Availability Data Collection Record (Subtype
X'0004')
When the session monitor network accounting and availability measurement
function is active, the NetView program writes an accounting and availability data
collection record to the external log. This occurs whenever an operator or a
command list issues the RECORD command with the SESSTATS parameter. The
accounting and availability data collection record has 4 data sections:
v Product ID section
v Session configuration data
v Accounting and availability data
v Advanced Peer-to-Peer Networking route data, if this is an Advanced

Peer-to-Peer Networking session

Combined Session Start-End Record (Subtype X'0005')
When the session monitor network accounting and availability measurement
function or the response time monitor function is active, the NetView program
writes a combined session start-end record. This record is written when a session
ends before the NetView program has a chance to write the session start record for
that session, or when the response time monitor function is active and the network
accounting and availability function is inactive. The combined session start-end
record has 6 data sections:
v Product ID section
v Session configuration data
v Session route data
v Session response time data
v Accounting and availability data
v Advanced Peer-to-Peer Networking route data, if this is an Advanced

Peer-to-Peer Networking session

The session response time data section is provided only if response time
monitoring is active.

BIND Failure Record (Subtype X'0006')
When the session monitor network accounting and availability measurement
function is active, the NetView program writes a BIND failure record to the
external log whenever a session setup fails during the BIND flow. The BIND
failure record has 4 data sections:
v Product ID section
v Session configuration data
v Session route data
v Advanced Peer-to-Peer Networking route data, if this is an Advanced

Peer-to-Peer Networking session

INIT Failure Record (Subtype X'0007')
When the session monitor network accounting and availability measurement
function is active, the NetView program writes an INIT failure record to the
external log whenever a session setup fails during the INIT flow. The INIT failure
record has 4 data sections:
v Product ID section
v Session configuration data
v Session route data
v Advanced Peer-to-Peer Networking route data, if this is an Advanced

Peer-to-Peer Networking session

130 Application Programmer’s Guide

Storage and Event Counter Record (Subtype X'0008')
The NetView program writes a counter record to the external log whenever an
operator or a command list issues a RECORD command with the STRGDATA
parameter. The counter record has 5 data sections:
v Product ID section
v Event counter data
v Session awareness counter data
v Resource counter data
v Storage data

Record Section Formats
The NetView program builds the external log records by adding combinations of
the following data sections to the external log record header section and the data
descriptor section:
v Product ID section
v Session route data section
v Session configuration data section
v Response time data section
v Accounting and availability data section
v Event counter data section
v Session awareness counter data section
v Resource counter data section
v Storage data section
v Advanced Peer-to-Peer Networking route data section

The detailed format of each section follows:

Header and Data Descriptor Data Sections
This topic describes the formats of the session monitor external log record header
section and data descriptor sections. Each external log record has a header section
and a data descriptor section. The following two data descriptor section formats
are used:
v Data for Subtypes X'0001' through X'0007' (see Table 52 on page 132)
v Storage and Event Counter Data (see Table 53 on page 133)

Table 51. Format of the External Log Record Header Format for the Session Monitor

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

000 000 2 LOGRLENG Record length Binary

002 002 2 LOGRSEGD Segment descriptor Binary

004 004 1 LOGRSYSI System indicator: (X'04' for
MVS)

Binary

005 005 1 LOGRRECT Record type (X'27') Binary

006 006 4 LOGRTIME Time since midnight, in
hundredths of a second, record
was moved into SMF buffer

Binary

010 00A 4 LOGRDATE Date when the record was
moved into the SMF buffer, in
the form 01yydddF where yy is
the current year (0–99), ddd is
the current day (1–336), and F
is the sign)

Packed

014 00E 4 LOGRSYID System identification (taken
from SID parameter)

Char

Appendix D. External Log Record Formats 131

Table 51. Format of the External Log Record Header Format for the Session
Monitor (continued)

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

018 012 4 LOGRSUBS Subsystem ID 'NETV' Char

022 016 2 LOGRSUBT Record subtype 1 Binary

Notes:

1. For LOGRSUBT field values, see “Record Subtypes” on page 129. For more
information about the fields in the external log record header, refer to the MVS library.

Table 52. Format of the Data Descriptor Section for Subtypes X'0001' Through X'0007'

Offset
Dec.X''

Offset
Hex.

Length
in Bytes Field Name Description Type

000 000 4 LHDRPRDO Offset of product section 1 Binary

004 004 2 LHDRPRDL Length of product section Binary

006 006 2 LHDRPRDN Number of product sections 2 Binary

008 008 4 LHDRSESO Offset of session configuration
section 1

Binary

012 00C 2 LHDRSESL Length of session configuration
section

Binary

014 00E 2 LHDRSESN Number of session
configuration sections 2

Binary

016 010 4 LHDRRTEO Offset of route data section 1 Binary

020 014 2 LHDRRTEL Length of route data section Binary

022 016 2 LHDRRTEN Number of route data sections
2

Binary

024 018 4 LHDRRTMO Offset of response time data
section 1

Binary

028 01C 2 LHDRRTML Length of response time data
section

Binary

030 01E 2 LHDRRTMN Number of response time data
sections 2

Binary

032 020 4 LHDRACCO Offset of accounting and
availability data section 1

Binary

036 024 2 LHDRACCL Length of accounting and
availability data section

Binary

038 026 2 LHDRACCN Number of accounting and
availability data sections 2

Binary

040 028 4 LHDRARTO Offset of Advanced
Peer-to-Peer Networking route
data section

Binary

044 02C 2 LHDRARTL Length of Advanced
Peer-to-Peer Networking route
data section

Binary

046 02E 2 LHDRARTN Number of Advanced
Peer-to-Peer Networking route
data sections

Binary

132 Application Programmer’s Guide

Table 52. Format of the Data Descriptor Section for Subtypes X'0001' Through
X'0007' (continued)

Offset
Dec.X''

Offset
Hex.

Length
in Bytes Field Name Description Type

Notes:

1. The offset of the first section of this type. All offsets are relative to the beginning of the
record.

2. The number of sections of this type in the record.

Table 53. Format of the Data Descriptor Section for Storage and Event Counter Data

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

000 000 4 LCNTPRDO Offset of product section 1 Binary

004 004 2 LCNTPRDL Length of product section Binary

006 006 2 LCNTPRDN Number of product sections 2 Binary

008 008 4 LCNTEVNO Offset of event counters 1 Binary

012 00C 2 LCNTEVNL Length of event counter data
section

Binary

014 00E 2 LCNTEVNN Number of event counter data
sections 2

Binary

016 010 4 LCNTSAWO Offset of SAW counters 1 Binary

020 014 2 LCNTSAWL Length of SAW data section Binary

022 016 2 LCNTSAWN Number of SAW counter data
sections 2

Binary

024 018 4 LCNTARBO Offset of ARB counters 1 Binary

028 01C 2 LCNTARBL Length of ARB data section Binary

030 01E 2 LCNTARBN Number of ARB data sections 2 Binary

032 020 4 LCNTSTGO Offset of storage counters 1 Binary

036 024 2 LCNTSTGL Length of STRG data section Binary

038 026 2 LCNTSTGN Number of STRG data sections
2

Binary

Notes:

1. The offset of the first section of this type. All offsets are relative to the beginning of the
record.

2. The number of sections of this type in the record

Product Data Section
The product data section is used with all session monitor external log record
subtypes.

Table 54. Format of the Product Data Section

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

000 000 2 LPRDSUBT Record subtype 1 Binary

002 002 2 LPRDVERN NetView program release level Char

004 004 4 LPRDNAME Product name (set to 'NETV') Char

Appendix D. External Log Record Formats 133

Table 54. Format of the Product Data Section (continued)

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

Notes:

1. The LPRDSUBT field is the same as the LOGRSUBT field in the log record header
section. For valid LPRDSUBT field values, see “Record Subtypes” on page 129.

Session Configuration Data Section
The session configuration data section is used with all session monitor external log
record subtypes, except subtype 8 (storage and event counter record). Most of the
information for this record comes from VTAM.

Table 55. Format of the Session Configuration Data Section

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

000 000 2 LSESREVL Revision level: X'0003' Binary

002 002 8 LSESPNAM Primary resource name3 Char

010 00A 8 LSESPPUN PU of primary resource Char

018 012 8 LSESPLNK Primary link name 1 Char

026 01A 8 LSESPSAP Primary subarea PU Char

034 022 8 LSESPDOM Primary NetView domain
name

Char

042 02A 8 LSESSNAM Secondary resource name 3 Char

050 032 8 LSESSPUN PU of secondary resource Char

058 03A 8 LSESSLNK Secondary link name 1 Char

066 042 8 LSESSSAP Secondary higher level PU
name

Char

074 04A 8 LSESSDOM Secondary NetView domain
name

Char

082 052 8 LSESPCLS Performance class name Char

090 05A 8 LSESCOST Class of service name Char

098 062 2 LSESERN Explicit route number 2 Binary

100 064 2 LSESRERN Reverse explicit route number
2

Binary

102 066 2 LSESVRN Virtual route number 2 Binary

104 068 2 LSESTPF Transmission priority 2 Binary

106 06A 8 LSESPCID Unique session ID Binary

114 072 1 LSESTYPE Session type:
1 LU-LU
2 SSCP-LU
3 SSCP-PU
4 SSCP-SSCP
5 CP-CP

Char

115 073 1 LSESXNET Cross-network session (Y or N) Char

134 Application Programmer’s Guide

Table 55. Format of the Session Configuration Data Section (continued)

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

116 074 1 LSESCODE BIND failure or UNBIND
reason code; see the following
offsets:
v Offset 7 into BINDF
v Offset 15 into CDSESSF
v Offset 1 into UNBIND.

For more information, see
Systems Network Architecture
Formats.

Binary

117 075 8 LSESPRNT Primary endpoint CP network
ID

Char

125 07D 8 LSESPRNM Primary endpoint CP name Char

133 085 8 LSESSCNT Secondary endpoint CP
network ID

Char

141 08D 8 LSESSCNM Secondary endpoint CP name Char

149 095 8 LSESCOSA Advanced Peer-to-Peer
Networking class of service
name

Char

157 09D 2 LSESTPFA Advanced Peer-to-Peer
Networking transport priority

Binary

159 09F 1 LSESFQLN Length of fully qualified PCID
CP name

Binary

160 0A0 17 LSESFQNM Fully qualified PCID CP name Char

177 0B1 4 LSESSCOD Sense code Binary

181 0B5 8 LSESLOGM Logmode name Char-

Notes:

1. This field contains the link name, channel unit address name, or dependent LU
requestor name.

2. If no data is available from VTAM, the default is X'FF'.

3. For configurations with hierarchies having more than 4 resources on either primary or
secondary sides, (a ″virtual/logical″ PU/LINK coded), this field can contain the name
of a link, channel unit address, or line group.

Session Route Data Section
The session route data section is used with all session monitor external log record
subtypes, except subtype 4 (accounting and availability data collection record) and
subtype 8 (storage and event counter record).

Table 56. Format of the Session Route Data Section

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

000 000 2 LRTEREVL Revision level: X'0001' Binary

002 002 2 LRTENUME Total number of nodes in
session path

Binary

Appendix D. External Log Record Formats 135

Table 56. Format of the Session Route Data Section (continued)

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

004 004 2 LRTENUMT Number of route elements in
LRTEETAB. This is the number
of NCP V3 or later nodes in
the session path.

Binary

006 006 — LRTEETAB Route element table (see note) —

Note: A 10-byte entry exists for each route element in the table. See Table 57 for the format
of this 10-byte entry.

Table 57. Format of the Ten-Byte Route Element Entry

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

000 000 8 LRTEENAM Route element name Binary

008 008 2 LRTEETGO Transmission group (out)
number

Binary

Note: Fields LRTEENAM and LRTEETGO are part of the LRTEETAB array of structures
(see Table 56 on page 135).

Accounting and Availability Data Section
The accounting and availability data section is used with session monitor external
log record subtypes 2, 3, 4, and 5.

Table 58. Format of the Accounting and Availability Data Section

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

000 000 2 LACCREVL Revision level: X'0002' Binary

002 002 2 — Reserved —

004 004 8 LACCBEGT Collection period begin time
stamp 1

Binary

012 00C 8 LACCENDT Collection period end time
stamp 1

Binary

020 014 4 LACCPCBC Number of control PIUs sent
from primary to secondary3

Binary

024 018 4 LACCPCCC Number of control characters
sent from primary to
secondary3

Binary

028 01C 4 LACCSCBC Number of control PIUs sent
from secondary to primary3

Binary

032 020 4 LACCSCCC Number of control characters
sent from secondary to
primary3

Binary

036 024 4 LACCPTBC Number of text PIUs sent from
primary to secondary3

Binary

040 028 4 LACCPTCC Number of text characters sent
from primary to secondary3

Binary

044 02C 4 LACCSTBC Number of text PIUs sent from
secondary to primary3

Binary

136 Application Programmer’s Guide

Table 58. Format of the Accounting and Availability Data Section (continued)

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

048 030 4 LACCSTCC Number of text characters sent
secondary to primary3

Binary

Notes:

1. The first four bytes of the time stamp are local time in store-clock format. The last four
bytes are the conversion factor from GMT to local time. (Example: 982B5412
FFFFCA5B.) This time stamp yields an approximate resolution of 1.04 seconds.

2. The session monitor uses the indicators in the first byte of the RH to select control and
text PIUs. BSC connections do not have control PIUs.

3. If SESSTATS=AVAIL, this field is zero.

Session Response Time Data Section
The session response time data section is used with session monitor external log
record subtypes 1, 2, and 5.

Table 59. Format of the Session Response Time Data Section

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

000 000 2 LRTMREVL Revision level: X'0001' Binary

002 002 8 LRTMCOLB Collection period begin time
stamp 1

Binary

010 00A 8 LRTMCOLE Collection period end time
stamp 1

Binary

018 012 2 LRTMOBJP Objective percentage (default is
0)

Binary

020 014 2 LRTMOBJB Objective counter number
(default is 1)

Binary

022 016 1 LRTMDEF Response time definition
(default is F (first))

Char

023 017 1 LRTMOBJF Objective met indicator:
Y Yes
N No

Char

024 018 4 LRTMTRAN Number of transactions
measured

Binary

028 01C 4 LRTMTOTT Total response time 2 Binary

032 020 16 LRTMBNDS Four 4-byte fields containing
counter boundaries 2

Binary

048 030 20 LRTMBKTS Five 4-byte fields with contents
of counters

Binary

068 044 4 LRTMOBJT Objective response time 2 Binary

Notes:

1. For LRTMCOLB and LRTMCOLE, the first four bytes of the time stamp are the local
time in store-clock format, and the last four are the conversion factor from GMT to
local time. (Example: 982B5412 FFFFCA5B.) This time stamp yields an approximate
resolution of 1.04 seconds.

2. LRTMTOTT, LRTMBNDS, and LRTMOBJT are in tenths of seconds.

Appendix D. External Log Record Formats 137

Event Counter Data Section
The event counter data section is used only with session monitor external log
record subtype 8 (storage and event counter record).

Table 60. Format of the Event Counter Data Section

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

000 000 8 LEVNSTIM Start of the recording period 1 Binary

008 008 8 LEVNETIM End of the recording period 1 Binary

016 010 8 LEVNDMID Domain ID (NCCF ID) Binary

024 018 4 LEVNPIUB PIU trace buffers processed Binary

028 01C 4 LEVNPIUS PIUs processed 2 Binary

032 020 4 LEVNSAWB SAW buffers processed 3 Binary

036 024 4 LEVNSESS Session start notifications Binary

040 028 4 LEVNSESE Session end notifications Binary

044 02C 4 LEVNSESR Sessions recorded to VSAM Binary

Notes:

1. For LEVNSTIM and LEVNETIM, the first four bytes of the time stamp are local time in
store-clock format. The last four bytes are the conversion factor from GMT to local time.
(Example: 982B5412 FFFFCA5B.) This time stamp yields an approximate resolution of
1.04 seconds.

2. Session awareness (SAW) is a VTAM-session monitor interface through which
information about network session activity is exchanged.

3. Refer to Systems Network Architecture Formats for more information about PIU.

Session Awareness (SAW) Counter Data Section
The session awareness (saw) counter data section is used only with session
monitor external log record subtype 8 (storage and event counter record).

Table 61. Format of the Session Awareness Counters Data Section

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

000 000 2 LSAWREVL Revision level: X'0003' Binary

002 002 2 — Reserved —

004 004 4 LSAWASBC Number of nonfiltered sessions Binary

008 008 4 LSAWASBM Session highwater mark Binary

012 00C 4 LSAWFLTC Sessions being filtered 1 Binary

016 010 4 LSAWFLTM Filter highwater mark 2 Binary

020 014 4 LSAWHSTE Sessions with an endpoint in
the host

Binary

024 018 4 LSAWRTMC Sessions keeping RTM data Binary

028 01C 4 LSAWXNTC Sessions keeping cross-network
data

Binary

032 020 4 LSAWDOMC Sessions keeping domain data Binary

036 024 4 LSAWACTC Sessions keeping accounting
data

Binary

138 Application Programmer’s Guide

Table 61. Format of the Session Awareness Counters Data Section (continued)

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

040 028 4 LSAWSSCP Number of SSCP-SSCP
sessions

Binary

044 02C 4 LSAWSCPM SSCP-SSCP highwater mark Binary

048 030 4 LSAWSPPU Number of SSCP-PU sessions Binary

052 034 4 LSAWSPUM SSCP-PU highwater mark Binary

056 038 4 LSAWSPLU Number of SSCP-LU sessions Binary

060 03C 4 LSAWSLUM SSCP-LU highwater mark Binary

064 040 4 LSAWLULU Number of LU-LU sessions Binary

068 044 4 LSAWLULM LU-LU highwater mark Binary

072 048 4 LSAWRCDQ Sessions waiting to be
recorded

Binary

076 04C 4 LSAWRDQM Record queue highwater mark Binary

080 050 4 LSAWPSPU Number of SSCP-PU pseudo
sessions

Binary

084 054 4 LSAWPSPM SSCP-PU pseudo sessions
highwater mark

Binary

088 058 4 LSAWCPCP Number of CP-CP sessions Binary

092 05C 4 LSAWCPCM CP-CP highwater mark Binary

096 060 4 LSAWRSCV Sessions keeping RSCV data Binary

Notes:

1. LSAWFLTC is the sum of the current sessions-filtered counts from session monitor and
VTAM. SAW=NO filtering should be done at VTAM rather than NetView.

2. LSAWFLTM is the sum of the sessions-filtered highwater counts from session monitor
and VTAM since the last RECORD STRGDATA request.

Resource (ARB) Counter Data Section
The resource (ARB) counter data section is used only with session monitor external
log record subtype 8 (storage and event counter record). The session monitor
creates active resource control blocks (ARBs) for all resources involved in sessions
known to the session monitor.

Table 62. Format of the Resource Counter Data Section

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

000 000 4 LARBCNT Number of resource control
blocks

Binary

004 004 4 LARBMAX ARB highwater mark Binary

008 008 4 LARBSSCP Number of SSCP resource
control blocks

Binary

012 00C 4 LARBSCPM SSCP ARB highwater mark Binary

016 010 4 LARBPU Number of PU resource control
blocks

Binary

020 014 4 LARBPUMX PU ARB highwater mark Binary

Appendix D. External Log Record Formats 139

Table 62. Format of the Resource Counter Data Section (continued)

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

024 018 4 LARBLU Number of LU resource control
blocks

Binary

028 01C 4 LARBLUMX LU ARB highwater mark Binary

032 020 4 LARBLNK Number of link/CUA ARBs Binary

036 024 4 LARBLNKM Link/CUA highwater mark Binary

Storage Counter Data Section
The storage counter data section is used only with session monitor external log
record subtype 8 (storage and event counter record).

Table 63. Format of the Storage Counter Data Section

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

000 000 4 LSTGRTM The number of bytes of storage
used for response time monitor
(RTM) data.

Binary

004 004 4 LSTGPARM The number of bytes of storage
used for session parameter
(PARM) data.

Binary

008 008 4 LSTGTRCE The number of bytes of storage
used for session trace (TRACE)
data. This includes PIU trace,
boundary function trace, and
gateway trace.

Binary

012 00C 4 LSTGASB The number of bytes of storage
used for active session block
(ASB) control blocks.

Binary

016 010 4 LSTGARB The number of bytes of storage
used for active resource block
(ARB) control blocks.

Binary

020 014 4 LSTGACCT The number of bytes of storage
used for accounting (ACCT)
data.

Binary

024 018 4 LSTGRSCV The number of bytes of storage
used for route selection control
vector (RSCV) data.

Binary

028 01C 2 LSTGREVL Revision level: X'0002' Binary

Advanced Peer-to-Peer Networking Route Data Section
For Advanced Peer-to-Peer Networking, this data section is used with all session
monitor external log record subtypes, except subtype 8 (storage and event counter
record).

Table 64. Format of the Advanced Peer-to-Peer Networking Route Data Section

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

000 000 2 LARTREVL Revision level: X'0001' Binary

140 Application Programmer’s Guide

Table 64. Format of the Advanced Peer-to-Peer Networking Route Data Section (continued)

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

002 002 2 LARTNUMT Number of route elements in
LARTTABL. This is the
number of nodes in the
Advanced Peer-to-Peer
Networking subnetwork,
including the primary CP.

Binary

004 004 1 LARTRVFL RSCV flags:

Bit Meaning

0-1 TG not valid
00 No IN-TG
01 IN-TG at end
10 IN-TG at start
11 IN-TG at start and

end

2 First RSCV error (VTAM
or NCP storage problem)
0 No first RSCV error
1 First RSCV error

3 First RSCV flag
0 First RSCV not

present
1 First RSCV present

4 Second RSCV error
(VTAM or NCP storage
problem)
0 No second RSCV

error
1 Second RSCV error

5 Second RSCV flag
0 Second RSCV not

present
1 Second RSCV

present

6-7 Reserved

Binary

005 005 — LARTTABL An array of Advanced
Peer-to-Peer Networking route
elements. See Table 65 for
format of an Advanced
Peer-to-Peer Networking route
element.

—

Table 65. Format of an Advanced Peer-to-Peer Networking Route Element

Offset
Dec.

Offset
Hex.

Length
in Bytes Field Name Description Type

000 000 2 LARTTGNU Transmission group (TG)
number

Binary

002 002 8 LARTTGNE TG partner network name Char

010 00A 8 LARTTGNA TG partner node name Char

018 012 1 LARTTGFL TG flag descriptor Binary

Appendix D. External Log Record Formats 141

142 Application Programmer’s Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1997, 2009 143

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided ″AS IS″, without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

Programming Interfaces
This publication documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of Tivoli NetView for z/OS.

144 Application Programmer’s Guide

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries,
or both. If these and other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (® or ™), these symbols
indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on
the Web at ″Copyright and trademark information″ at http://www.ibm.com/legal/
copytrade.shtml .

Adobe and Acrobat and all Adobe-based trademarks are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

Notices 145

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

146 Application Programmer’s Guide

Index

A
AAUTLOGR macro 128
accepting a CP-MSU or NMVT 90
accepting an MDS-MU in non-NetView nodes 89
accessibility xiii
accessing the PPI using DSIPHONE 35
accounting and availability data collection, session monitor

external log record 130
accounting and availability data section, session monitor

external log 136
additional product set attributes, network asset management

vital product data description 101
ADDLINE command list 80
Advanced Peer-to-Peer Networking route data section, session

monitor external log 140
Advanced Peer-to-Peer Networking route element data

section, session monitor external log 141
agent unit of work correlator GDS variable

contents 88
sequence number date and time structure 88

agent unit of work correlator GDS variable.
date and time structure example 89
overview 46

alert receiver task 12
alert report format, hardware monitor external log 111
Alerts-Dynamic panel 1, 27
answering node configuration data, network asset

management vital product data description 97
APF-authorized sender

receiver program 14, 23
sending data buffers 29

application program-level error reporting 94
applications

high performance transport
writing 69

management services
destination name considerations 50
implementing 51
writing 49

operations management served
destination name considerations 58
implementing 59
writing 57

APSERV command 8
ASCB-ADR

obtaining address (request type 3) 20
RPB data field 14
with request type 10 24
with request type 22 31
with request type 23 31
with request type 3 21
with request type 4 23
with request type 9 24

assembler 43
syntax for CALL 6

asynchronous replies 45
attached device configuration data, network asset management

vital product data description 100
AUTH-IND

receiver program 23
RPB data field 14

AUTH-IND (continued)
sending data buffers 29

B
BFRDEDAT mapping, hardware monitor external log 114
BIND failure, session monitor external log record 130
bind settings, VTAM 53
blocking replies to a request 45
BNJTBRF macro 109
books

see publications ix
BUFF-ADR 14
BUFF-LEN 14, 31
BUFFER-Q-FLAG 14
buffering data 43
buffers

creating queues 3
purging (request type 23) 31
queue limits

description 3
request type 12 27
request type 4 21
subsystem address space 11

receiving
overview 4
programming example 76
request type 22 29

sending
overviews 4
programming example 77
request type 14 27

BUFFQ-L
with request type 4 22

building MDS-MUs 43

C
C language

interface considerations 43
syntax for CALL 5

CALL statement
overview 5
register conventions 6
syntax 5, 6

certificate authentication 63
chaining 45
choosing a request type 18
CMDSERV interface 7
CNMCALRT service routine 12
CNMCNETV 5
CNME1101 121
CNMGETDATA service routine

with high performance transport API 71
with MS applications 51

CNMGETDATA service routine.
with operations management MS applications 59

CNMHREGIST service routine 69
CNMHRGS service routine 69
CNMHSENDMU service routine 70

© Copyright IBM Corp. 1997, 2009 147

CNMI 79
CNMREGIST service routine

with MS applications 49
CNMREGIST service routine.

with operations management served applications 57
CNMRGS

See CNMREGIST
CNMS4227 4
CNMS4228 4
CNMS4229 5
CNMS4257 4
CNMS4287 4
CNMSENDMU service routine

with MS applications 50
CNMSENDMU service routine.

with operations management served applications 58
CNMSMU

See CNMSENDMU
combined session start-end, session monitor external log

record 130
command authorization table external log record format 114
command lists

common operations services 80
network asset management 101

commands and messages, sending to NetView 6
common operations services (COS)

command lists
ADDLINE 80
FINDNCP 80
INITCNFG 80
SPLOOKUP 80
TESTRCMD 80
TESTSP 80

commands
LINKDATA 78
LINKPD 78
LINKTEST 78
RUNCMD 78

common record prefix, network asset management 103
considerations for API transport applications

interface considerations
buffering data 43
building MDS-MUs 43
forwarding data 43
suspending the application 43

MDS transactions
agent unit of work correlators 46
asynchronous replies 45
blocking replies 45
chaining replies 45, 46
description 44
MDS-MU error messages 45, 46
MDS-MU types 44
SNA condition report 45, 46
synchronous replies 45
timer intervals 46

tasking structure 44
controlling the PPI trace facility 83
conventions

typeface xv
correlators, MDS-MU

contents 88
date and time structure example 89
overview 46
sequence number date and time structure 88

COS
command lists

ADDLINE 80
FINDNCP 80
INITCNFG 80
SPLOOKUP 80
TESTRCMD 80
TESTSP 80

commands
LINKDATA 78
LINKPD 78
LINKTEST 78
RUNCMD 78

CP-MSU formatted alert
accepting 90
description 1, 90
format 90
maximum size 79
multiple major vectors 90
processing 1
sending formatted alert

overview 3
request type 12 25

creating applications
with high performance transport API 71
with MS applications 52
with operations management MS applications 60

creating buffer queues 3

D
data descriptor section, response time and accounting data

functions, session monitor external log 132
data descriptor section, storage and event counter data,

session monitor external log 133
data encryption 63
data formats for LU 6.2 conversations

accepting 89
format 85
MDS data types

CP-MSU 90
NMVT 91
R&TI 91
routing report 91
SNA condition report 93, 94

MDS error messages
application program-level reporting 94
characteristics 92
contents 93
example 93
format 92
SNA condition reports 93, 94
types of errors 92

MDS header format
agent unit of work correlator GDS variable 46, 88
routing information GDS variable 86
send requests and destination names 50, 58

MDS-MU example 89
message size 85

data section formats for session monitor external logs
accounting and availability data section 136
Advanced Peer-to-Peer Networking route data section 140
Advanced Peer-to-Peer Networking route element data

section 141
data descriptor section, response time and accounting data

functions 132

148 Application Programmer’s Guide

data section formats for session monitor external logs
(continued)

data descriptor section, storage and event counter
data 133

event counter data section 138
external log record header data section 131
product data section 133
resource counter data section 139
response time data section 137
session awareness counter data section 138
session configuration data section 134
session route data section 135
storage data section 140
ten-byte route element entry 136

data types for MDS-MU GDS
CP-MSU 90
NMVT 91
R&TI 91
routing report 91
SNA condition report 93, 94

DCE data for DSUs/CSUs, network asset management vital
product data description 99

DCE data for modems, network asset management vital
product data description 99

DCE hardware subrecord format, network asset
management 105

deactivating a receiver
coding example 77
overview 2
request type 9 23

deciding which transport to use 42
DEFAULTS command 46
defining a receiver

request type 4 21
defining a receiver.

coding example 75
overview 2

deleting a receiver
overview 2
request type 10 24

deregistering applications
high performance transport API 72
MS transport API 52
operations management MS applications 60

destination location name MS subvector 86
detailed data network alert report format, hardware monitor

external log 114
differences between transports 41
directory names, notation xv
DISPPI command 84
DSI6REGS macro

with MS applications 49
with operations management served applications 57

DSI6SNDS macro
with MS applications 50
with operations management served applications 58

DSICRTR task 12
DSIDTR, RPB fields 14
DSIGDS task 80
DSIGETDS macro

with high performance transport API 71
with MS applications 51
with operations management MS applications 59

DSIHREGS macro 69
DSIHSNDS macro 70
DSIPHONE results 37
DSIPHONE usage notes 37

DSIPHONE, accessing the PPI 35
DTR fields

DTRASCB 14
DTRAUTH 14
DTRBQFL 14
DTRBQL 14
DTRCKBTS 14
DTREACT 14
DTRECB 14
DTREND 14
DTREND1 14
DTRLEN 14
DTRRCVAT 14
DTRRCVNM 14
DTRRCVTT 14
DTRRECOP 14
DTRREQT 14
DTRRETC 14
DTRRVID 14
DTRSAFID 14
DTRSAFWK 14
DTRSDAST 14
DTRSDID 14
DTRSDNAM 14
DTRSDTT 14
DTRTCB 14
DTRUBL 14
DTRUBPTR 14
DTRVERSN 14
DTRVRCHK 14

DTRASCB
obtaining address (request type 3) 20
RPB data field 14
with request type 10 24
with request type 22 31
with request type 23 31
with request type 3 21
with request type 4 23
with request type 9 24

DTRBQFL 14
DTRBQL

with request type 4 22
DTREACT

with request type 4 23
DTRSDID

receiving data buffers 31
RPB field description 14
sending alerts 27

DTRUBL 14, 31
DTRUBPTR 14
DTRVERSN 14
Dynamic Interface Invocation client 65

E
ECB (event control block)

request type 22 31
request type 24 33
request type 4 22
RPB field 14

ECB-ADR
request type 24 34
request type 4 22
RPB field 14

education
see Tivoli technical training xiii

enabling the NetView program to receive alerts 12

Index 149

enabling the PPI
in MVS 11

enabling the PPI trace facility 11, 83
end subrecord format, network asset management 103
environment variables, notation xv
error messages for MDS-MU GDS

application program-level reporting 94
characteristics 92
contents 93
example 93
format 92
SNA condition reports 93, 94
types of errors 92

error subrecord format, network asset management 107
ESTAE program 14
ETHERNET LAN data report format, hardware monitor

external log 113
event counter data section, session monitor external log 138
event report format, hardware monitor external log 112
EX-ACT

with request type 4 23
external data set storage 83
external log record formats

command authorization table 114
hardware monitor

alert report format 111
BFRDEDAT mapping 114
detailed data network alert report format 114
ETHERNET LAN data report format 113
event report format 112
external log record header format 109
generic event report format 112
hardware monitor data descriptor format 109
local area network report 113
product report format 111
self-defining text message report format 114
statistical report format 113

session monitor
accounting and availability data collection record 130
BIND failure record 130
combined session start-end record 130
data section formats 131
INIT failure record 130
RTM collection record 129
session end record 129
session start record 129
storage and event counter record 131
writing to 128

span authorization table 115
task resource utilization data 115

external log record header data section, session monitor
external log 131

external log record header format, hardware monitor 109

F
FINDNCP command list 81
flags MS subvector

message type 87
flags MS subvector.

last MDS message indicator 87
flags, MS subvector

first MDS message indicator 87
FMH-5 restriction on non-NetView communications 54
forwarding data 43

G
GDS variable 46
generalized trace facility

enabling 11
starting 83
using 83

generic event report format, hardware monitor external
log 112

get data facility
with high performance transport 71
with high performance transport API 71
with MS applications 51
with operations management MS applications 59

H
hardware monitor

accepting a CP-MSU 90
accepting an MDS-MU in non-NetView

communications 89
external log record formats

alert report format 111
BFRDEDAT mapping 114
detailed data network alert report format 114
ETHERNET LAN data report format 113
event report format 112
external log record header format, hardware

monitor 109
generic event report format 112
hardware monitor data descriptor format 109
local area network report 113
product report format 111
self-defining text message report format 114
statistical report format 113

processing formatted alerts
overview 1, 2, 13
request type 12 27

hardware monitor data descriptor format, hardware monitor
external log 109

header format for MDS-MU GDS
agent unit of work correlator GDS variable

contents 88
date and time structure example 89
overview 46
sequence number date and time structure 88

routing information GDS variable
destination location subvector 86
flags MS subvector 87
origin location subvector 86

hexadecimal values 95
high performance transport

deciding when to use 43
description 41, 69
differences from the MS transport 41
implementing applications

maintaining data integrity 73
NetView system programmer 71
non-NetView system programmer 73

restrictions 42
writing applications

receive macro 71
registration services 69
send macro 70

HLL
interface considerations 43
syntax for CALL 5

150 Application Programmer’s Guide

I
implementing high performance transport applications

maintaining data integrity 73
NetView system programmer

creating applications 71
deregistering applications 72
logmodes 71
registering applications 71
sending application data 72

non-NetView system programmer
MDS_HP_RECEIVE 73

implementing management service applications
NetView operator

messages 51
REGISTER command 51

NetView system programmer
creating applications 52
deregistering applications 52
MS category 52
registering applications 52
sending application data 52

non-NetView system programmer
applicable LU 6.2 architecture 53
BIND setting 53
FMH-5 restrictions 54
send process 55
time-out message 55
VTAM 53

implementing operations management served applications
NetView operator 59
NetView system programmer

creating applications 60
deregistering applications 60
registering applications 60
sending application data 60

non-NetView system programmer 60
INIT failure, session monitor external log record 130
INITCNFG command list 80
initializing a receiver

coding example 75
overview 2
request type 4 21

interface considerations 43
internal storage 83

J
Java SAAJ client 65

L
link configuration data, network asset management vital

product data description 99
LINKDATA 78
LINKPD 78
LINKTEST 78
LOAD macro 6
local area network report, hardware monitor external log 113
logmodes and high performance applications 71
LookAt message retrieval tool xii
LU 6.2 transport APIs

considerations for applications
interface considerations 43
MDS transactions 44
tasking structure 44

LU 6.2 transport APIs (continued)
high performance transport

deciding when to use 43
description 41
differences from the MS transport 41
implementing 71
restrictions 42
writing 69

MS transport
deciding when to use 42
description 41
difference from high performance transport 41
implementing 51
restrictions 41
writing 49

operations management MS transport
description 57
implementing 59
writing 57

M
macros

CNMCALRT 12
DSI6REGS 49, 57
DSI6SNDS

with high performance transport API 72
with operations management served applications 58,

60
writing MS applications 50, 52

DSIGETDS
with high performance transport API 71, 72
with MS applications 51, 59

DSIHREGS 69
DSIHSNDS 70
WAIT

for ECB posting 14, 33
request type 22 31
request type 4 23

maintaining integrity with high performance transport
applications 73

manuals
see publications ix, xiii

MAXREPLY 46
MDS function 41
MDS transactions

agent unit of work correlators 46, 88
asynchronous replies 45
blocking replies 46
chaining replies 45
description 44
error messages

application considerations 45, 46
contents 93
example 93
format 92

MDS-MU types 44
SNA condition report 45, 46
synchronous replies 45
timer intervals 46

MDS_HP_RECEIVE 73
MDS-MU message example 89
message retrieval tool, LookAt xii
message to operator (MTO) 80
message type flags, MDS

first MDS message indicator 87
last MDS message indicator 87

Index 151

message type flags, MDS (continued)
message type 87

messages and commands, sending to NetView 6
MLWTO attributes 37
monitoring the PPI trace facility 84
MS categories and applications 52
MS transport

deciding when to use 42
difference from high performance transport 41
implementing applications

NetView operator 51
NetView system programmer 52
non-NetView system programmer 52

restrictions 41
with COS 79
writing applications

receive macro 51
registration services 49
send macro 50

multiple alert receivers 12
multiple receivers 12
multiple-domain support 41
MVS

enabling the PPI 11

N
NETVALRT

receiver program 14, 20
sending formatted alerts 25

NetView Web Services
SOAP client, starting 63
SOAP transport 63
userid, password authentication 63

network asset management
sample command list record formats

common record prefix 103
DCE hardware subrecord 105
end subrecord 103
error subrecord 107
PU hardware subrecord 104
PU software subrecord 105
start subrecord 103
time-out subrecord 106

vital product data description
additional product set attributes 101
answering node configuration data 97
attached device configuration data 100
DCE data for DSUs/CSUs 99
DCE data for modems 99
link configuration data 99
product data 98
product set attributes 100
sense data 100

NMVT request
description 1, 91
format 91
major vectors 90
processing 1
sending formatted alert

overview 3
request type 12 25

non-NetView communication
accepting an MDS-MU 89
with high performance transports 73
with MS transports 52
with operations management served MS transports 60

notation
environment variables xv
path names xv
typeface xv

O
obtaining ASCB and TCB addresses

coding example 75
overview 2
request type 3 20

online publications
accessing xiii

operating system transportable programming
disconnecting a receiver 77
initializing a receiver 75
receiving a buffer 76
sending a buffer synchronously 77

operations management MS transport
description 57
implementing applications

MS transport, implementing applications, non-NetView
system programmer 60

NetView operator 59
NetView system programmer 60

writing applications
receive macro 59
registration services 57
send macro 58

ordering publications xiii
origin location MS subvector 86

P
passing requests to the NetView program 5
path names, notation xv
PL/I

interface considerations 43
syntax for CALL 5

posting an ECB 33
PPI

programming techniques 75
query status (request type 1) 18
routing alerts to multiple receivers 12
sending requests

overview 35
trace facility

controlling 83
DISPPI command 84
enabling 11, 83
external data set storage 83
internal storage 83
monitoring 84
SIZE parameter, TRACEPPI command 83
using 83
using the generalized trace facility 11, 83

version check 14
PPI-VERSION 14
processing requests 2
product data section, session monitor external log 133
product data, network asset management vital product data

description 98
product report format, hardware monitor external log 111
product set attributes, network asset management vital

product data description 100

152 Application Programmer’s Guide

program-to-program interface
functions 1
overview 1
passing requests 5
return codes 95
sending requests

assembler model 6
HLL model 5
overview 5, 11

programming notes 75
programming techniques 75
PU hardware subrecord format, network asset

management 104
PU software subrecord format, network asset

management 105
publications ix

accessing online xiii
ordering xiii

purge a data buffer
overview 2
request type 23 31

Q
querying the PPI status

request type 1 18
querying the program-to-program interface status

overview 2
querying the receiver status

overview 2
request type 2 20

R
RCVREPLY 46
receive macro

with high performance transport 71
with high performance transport API 71
with MS applications 51
with operations management MS applications 59

receiver
check for active 14, 23
deactivate (request type 9) 23, 77
define (request type 4) 21
delete (request type 10) 24
initialize (request type 4) 21, 75
query status (request type 2) 20
send data buffer synchronously (request type 14) 27, 77

RECEIVER-ID
alert receiver 25
query receiver 20
RPB field 14
send data buffer 27

receiving a data buffer
overview 4, 76
request type 22 29

REGISTER command
with high performance transport API 59
with MS applications 51
with operations management served applications 58

registering applications
with high performance transport API 71
with MS applications 52
with operations management MS applications 60

registration service
with high performance transport API 69

registration service (continued)
with MS applications 50
with operations management served applications 57

registration services
with MS applications 49
with operations management served applications 57

replies and LU 6.2 conversations 45
asynchronous, synchronous 45
MDS-MU 45

reply last message 47
request type, choosing 18
requests

indicators 14
MDS-MU 44
passing to the program-to-program interface 5
processing 2
return codes 95
types

01–query the PPI status 18
01–query the program-to-program interface status 2
02–query a receiver’s status 2, 20
03–obtain the ASCB and TCB addresses 2, 20
04–define and initialize a receiver 2, 21
09–deactivate a receiver 2, 23
10–delete a receiver 2, 24
12–send an NMVT or CP-MSU formatted alert 2, 25
14–send a data buffer to a receiver synchronously 2,

27
22–receive a data buffer 2, 29
23–purge a data buffer 2, 31
24–wait for the receive or connect ECB returned 2
24–wait for the receive or connect ECB returned for the

program-to-program interface 33
resource counter data section, session monitor external

log 139
response time data section, session monitor external log 137
restrictions

high performance transport API 42
MS transport API 41

return codes 95
routing alerts 12
routing and targeting instruction (R&TI) format 91
routing information GDS variable

destination location subvector 86
flags MS subvector

first MDS message indicator 87
last MDS message indicator 87
message type 87

origin location subvector 86
routing report format 91
RPB (request parameter buffer)

building 13
defining 3, 21
description 13
DSIDTR, RPB fields 14
fields 14
type 01 request 18
type 02 request 20
type 03 request 20
type 04 request 21
type 09 request 23
type 10 request 24
type 12 request 25
type 14 request 27
type 22 request 29
type 23 request 31
type 24 request 33

Index 153

RTM collection, session monitor external log record 129
RUNCMD 79

S
sample command list record formats, network asset

management
common record prefix 103
DCE hardware subrecord 105
end subrecord 103
error subrecord 107
PU hardware subrecord 104
PU software subrecord 105
start subrecord 103
time-out subrecord 106

samples
CNME1101 121
CNMS4227 4
CNMS4228 4
CNMS4229 5
CNMS4257 4
CNMS4287 4

SAW (session awareness) 138
self-defining text message report format, hardware monitor

external log 114
send macro

with high performance transport 70
with MS applications 50
with operations management served applications 58

send process for non-NetView communications 55
send service

with high performance transport 70
with MS applications 50
with operations management served applications 58

SENDER-ID
receiving data buffers 31
RPB field description 14
sending alerts 27

sending a data buffer
asynchronously

coding example 77
synchronously

overview 2, 4
request type 14 27

sending an NMVT or CP-MSU formatted alert
overview 3
request type 12 25

sending application data
with high performance transport API 72
with MS applications 52
with operations management MS applications 60

sending commands and messages to NetView 6
sense data, network asset management vital product data

description 100
service routines

CNMGETDATA
with high performance transport API 71
with MS applications 51
with operations management served applications 59

CNMHRGS (CNMHREGIST) 69
CNMHSMU (CNMHSENDMU) 70
CNMREGIST 49, 57
CNMSENDMU 50, 58

services, common operations 78
session awareness counter data section, session monitor

external log 138

session configuration data section, session monitor external
log 134

session end, session monitor external log record 129
session monitor external log records

accounting and availability data collection record 130
BIND failure record 130
combined session start-end record 130
data section formats

10-byte route element entry 136
accounting and availability data section 136
Advanced Peer-to-Peer Networking route data

section 140
Advanced Peer-to-Peer Networking route element data

section 141
data descriptor section, response time and accounting

data functions 132
data descriptor section, storage and event counter

data 133
event counter data section 138
product data section 133
resource counter data section 139
response time data section 137
session awareness counter data section 138
session configuration data section 134
session route data section 135
storage data section 140

data secton formats
external log record header data section 131

INIT failure record 130
RTM collection record 129
session end record 129
session start record 129
storage and event counter record 131
writing to 128

session route data section, session monitor external log 135
session start, session monitor external log record 129
SIZE parameter, TRACEPPI command 83
SMF (system management facilities)

external log record
type 37 102, 109
type 38, subtype 1 114
type 38, subtype 2 115
type 38, subtype 3 115
type 39 128

SNA condition report 45
application errors 94
routing errors 93
s 46

SNASVCMG mode 42
SOAP client 63
SOAP envelope 64, 65
SOAP method 65
SOAP request 63
span authorization table external log record format 115
SPLOOKUP command list 80
start subrecord format, network asset management 103
statistical report format, hardware monitor external log 113
status

query PPI (request type 1) 18
query receiver (request type 2) 20
set receiver 21, 23

storage and event counter, session monitor external log
record 131

storage data section, session monitor external log 140
storage requirements 11, 27
subvector message data

X'10', product data 98

154 Application Programmer’s Guide

subvector message data (continued)
X'11', product data 98
X'50', DCE data 99
X'52', link configuration data 99
X'7D', sense data 100
X'84', product set attributes 100
X'86', additional product set attributes 101

suspending the application 43
synchronous replies 45
system management facilities (SMF)

external log record
type 37 102, 109
type 38, subtype 1 114
type 38, subtype 2 115
type 38, subtype 3 115
type 39 128

System/390 41

T
task resource-utilization-data external log record format 115
tasking structure for applications 44
TCB-ADR

obtaining address (request type 3) 20
RPB data field 14

ten-byte route element entry, session monitor external log 136
TESTRCMD command list 81
TESTSP command list 81
time-out message 55
time-out subrecord format, network asset management 106
timer intervals 46
Tivoli Software Information Center xiii
Tivoli technical training xiii
trace facility for the PPI

controlling 83
DISPPI command 84
enabling 11, 83
external data set storage 83
internal storage 83
monitoring 84
SIZE parameter, TRACEPPI command 83
using 83
using the generalized trace facility 11, 83

training, Tivoli technical xiii
typeface conventions xv

U
user group on Yahoo, NetView xiv
using the generalized trace facility 11, 83
using the PPI trace facility 83
using the sample command lists 101

V
variables, notation for xv
vital product data

descriptions
additional product set attributes 101
answering node configuration data 97
attached device configuration data 100
DCE data for DSUs/CSUs 99
DCE data for modems 99
link configuration data 99
product data 98
product set attributes 100

vital product data (continued)
descriptions (continued)

sense data 100
message format

DWO100I 98
DWO101I 100
DWO102I 98
DWO103I 98
DWO105I 100
DWO106I 101

VTAM LU 6.2 support 53

W
WAIT

for ECB posting 14, 33
request type 22 31
request type 4 23

waiting for the ECB
overview 2
request type 24 33

Web Services Gateway 63
Dynamic Interface Invocation client 65
Java SAAJ client 65
SOAP envelope 64, 65
SOAP method 65
tags 65
WSDL-generated proxy client 64

Web Services server 63
writing

high performance transport programs
CNMGETDATA receive macro 71
CNMHREGIST registration macro 69
CNMHSENDMU send macro 70
DSIGETDS receive macro 71
DSIHREGS registration macro 69
DSIHSNDS send macro 70

management services applications
CNMGETDATA receive macro 51
CNMREGIST service routine 49
CNMSENDMU send macro 50
DSI6REGS registration macro 49
DSI6SNDS send macro 50
DSIGETDS receive macro 51
REGISTER command 50

operations management served applications
CNMGETDATA receive macro 59
CNMREGIST service routine 57
CNMSENDMU send macro 58
DSI6REGS registration macro 57
DSI6SNDS send macro 58
DSIGETDS receive macro 59
REGISTER command 58

writing to session monitor external logs 128
WSDL file 63
WSDL-generated proxy client 64

Y
Yahoo user group, NetView xiv

Z
znvwsdl.wsdl 64
znvwsdl1.wsdl 64
znvwsdl2.wsdl 65

Index 155

156 Application Programmer’s Guide

����

Program Number: 5697-ENV

Printed in USA

SC31-8855-03

	Contents
	Figures
	About this publication
	Intended audience
	Publications
	IBM Tivoli NetView for z/OS library
	Related publications
	Accessing terminology online
	Using NetView for z/OS online help
	Using LookAt to look up message explanations
	Accessing publications online
	Ordering publications

	Accessibility
	Tivoli technical training
	Downloads
	Support for problem solving
	Conventions used in this publication
	Typeface conventions
	Operating system-dependent variables and paths
	Syntax diagrams

	Chapter 1. Understanding the NetView Program-to-Program Interface
	How the Interface Works
	Processing Requests
	Creating Buffer Queues
	Sending an NMVT or CP-MSU Formatted Alert
	Sending a Data Buffer Synchronously
	Receiving a Data Buffer Synchronously

	How the Interface Works with Applications
	High-Level Language Programs
	Assembler Programs
	Register Conventions
	Program Placement
	Sending Commands and Messages to the NetView Program
	Using the CMDSERV Interface
	Using the APSERV Interface

	Chapter 2. Using High-Level Languages and Assembler to Send Requests
	Enabling the Interface for MVS
	Receiving Alerts
	Routing Alerts to Multiple Receivers
	Building the Request Buffer
	Using the RPB
	Fields in the RPB

	Choosing the Request Type
	Request Type 1: Query the PPI Status
	Request Type 2: Query a Receiver′s Status
	Request Type 3: Obtain the ASCB and TCB Addresses
	Request Type 4: Define and Initialize a Receiver
	Request Type 9: Deactivate a Receiver
	Request Type 10: Delete a Receiver
	Request Type 12: Send an NMVT or CP-MSU Formatted Alert to the NetView Program
	Request Type 14: Send a Data Buffer to a Receiver Synchronously
	Request Type 22: Receive a Data Buffer
	Request Type 23: Purge a Data Buffer
	Request Type 24: Wait for the Receive or Connect ECB

	Chapter 3. Using REXX to Send Requests
	DSIPHONE
	Parameters
	DSIPHONE Usage Notes
	MLWTO Attributes Support
	DSIPHONE Results

	Chapter 4. Using the NetView LU 6.2 Transport APIs
	NetView MS Transport API
	MDS Function
	MS Transport Restrictions

	NetView High Performance Transport API
	Differences between Transports
	High Performance Transport Restrictions

	Deciding Which Transport API to Use
	When to Use the NetView MS Transport API
	When to Use the NetView High Performance Transport API

	Considerations for Applications
	Send-Receive Interface
	Tasking Structure
	MDS Transactions
	Requests and Replies
	Receiving Synchronous and Asynchronous Replies
	Chaining Replies
	Saving and Using MDS-MU Correlators
	Specifying Timer Intervals
	Handling MDS Error Messages

	Chapter 5. Management Services Applications
	Registration Services
	Session Outage Notification
	REGISTER Command

	Send Macro
	Destination Name
	Restrictions

	Receive Macro
	Implementing the Application
	NetView Operator
	NetView System Programmer
	Non-NetView System Programmer
	Applicable LU 6.2 Architecture
	Send Process
	Time Out Message

	Chapter 6. Operations Management Served Applications
	Registration Service
	Buffering Replies
	Session Outage Notification
	REGISTER Command

	Send Macro
	Destination Name
	Restrictions

	Receive Macro
	Implementing the Application
	NetView Operator
	NetView System Programmer
	Non-NetView System Programmer

	Operations Management Routing Considerations

	Chapter 7. Using NetView Web Services Gateway
	Introduction to the SOAP Client
	Using Web Services Gateway
	Making a SOAP Request
	Using a SOAP Envelope
	Using a WSDL-Generated Proxy Client
	Using a Java SAAJ Client
	Using a Dynamic Invocation Interface Client

	Formatting a SOAP Envelope
	Output Format

	Chapter 8. NetView High Performance Transport API
	Registration Service
	Send Service
	Get Data Facility
	Implementing High Performance Transport API Applications
	NetView System Programmer
	Non-NetView System Programmer

	Maintaining Data Integrity

	Chapter 9. Programming Techniques
	Writing Effective Programs
	High-Level Language and Assembler Programming Examples
	Initializing a Receiver
	Receiving a Buffer
	Sending a Buffer Synchronously
	Disconnecting a Receiver

	REXX Programming Examples
	Usage Scenario

	Common Operations Services Commands
	COS Command Flow
	Message to Operator
	Using COS Command Lists

	Chapter 10. Using the Trace Facility
	Controlling the Trace Facility
	Writing to Internal Storage
	Writing to External Storage with GTF

	Monitoring the Trace Facility

	Appendix A. Data Formats for LU 6.2 Conversations
	MDS Header Structure
	MDS Routing Information (X'1311') GDS Variable
	Location Names
	Flags (X'90') MS Subvector

	Agent Unit of Work Correlator (X'1549') GDS Variable
	Correlator Contents

	Accepting an MDS-MU
	MDS-MU Example

	MDS Data Types
	CP-MSU Format
	Accepting a CP-MSU
	Multiple Major Vectors in a CP-MSU

	Routing Report Format
	NMVT Format
	R&TI Format

	MDS Error Message Format
	MDS Error Message Example
	Application Program-Level Error Reporting

	Appendix B. Program-to-Program Interface Return Codes
	Appendix C. Network Asset Management
	Vital Product Data Descriptions
	Answering Node Configuration Data
	Product Data (Subvectors X'10' and X'11')
	DCE Data
	Link Configuration Data (Subvector X'52')
	Sense Data (Subvector X'7D')
	Attached Device Configuration Data (Subvector X'82')
	Product Set Attributes (Subvector X'84')
	Additional Product Set Attributes (Subvector X'86')

	Network Asset Management Command Lists
	Using the Sample Command Lists
	Writing Command Lists
	Network Asset Management Record Formats
	Common Record Prefix
	Start Subrecords
	End Subrecords
	PU Hardware Subrecords
	PU Software Subrecords
	DCE Hardware Subrecords
	Time-Out Subrecords
	User Data Subrecords
	Error Subrecords

	Appendix D. External Log Record Formats
	External Log Record Type 37
	External Log Record Type 38
	NetView Command Authorization Table External Log Record
	NetView Task Resource-Utilization-Data External Log Record
	NetView Span Authorization Table External Log Record
	Record Header and Section Formats
	Specific Subtype 1 Section Formats
	Specific Subtype 2 Section Formats
	Specific Subtype 3 Section Formats

	External Log Record Type 39
	Record Subtypes
	RTM Collection Record (Subtype X'0001')
	Session End Record (Subtype X'0002')
	Session Start Record (Subtype X'0003')
	Accounting and Availability Data Collection Record (Subtype X'0004')
	Combined Session Start-End Record (Subtype X'0005')
	BIND Failure Record (Subtype X'0006')
	INIT Failure Record (Subtype X'0007')
	Storage and Event Counter Record (Subtype X'0008')

	Record Section Formats
	Header and Data Descriptor Data Sections
	Product Data Section
	Session Configuration Data Section
	Session Route Data Section
	Accounting and Availability Data Section
	Session Response Time Data Section
	Event Counter Data Section
	Session Awareness (SAW) Counter Data Section
	Resource (ARB) Counter Data Section
	Storage Counter Data Section
	Advanced Peer-to-Peer Networking Route Data Section

	Notices
	Programming Interfaces
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

